首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes mellitus (T2DM) is associated with reduced suppression of glucagon during oral glucose tolerance test (OGTT), whereas isoglycemic intravenous glucose infusion (IIGI) results in normal glucagon suppression in these patients. We examined the role of the intestinal hormones glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2) in this discrepancy. Glucagon responses were measured during a 3-h 50-g OGTT (day A) and an IIGI (day B) in 10 patients with T2DM [age (mean ± SE), 51 ± 3 yr; body mass index, 33 ± 2 kg/m(2); HbA(1c), 6.5 ± 0.2%]. During four additional IIGIs, GIP (day C), GLP-1 (day D), GLP-2 (day E) and a combination of the three (day F) were infused intravenously. Isoglycemia during all six study days was obtained. As expected, no suppression of glucagon occurred during the initial phase of the OGTT, whereas significantly (P < 0.05) lower plasma levels of glucagon during the first 30 min of the IIGI (day B) were observed. The glucagon response during the IIGI + GIP + GLP-1 + GLP-2 infusion (day F) equaled the inappropriate glucagon response to OGTT (P = not significant). The separate GIP infusion (day C) elicited significant hypersecretion of glucagon, whereas GLP-1 infusion (day D) resulted in enhancement of glucagon suppression during IIGI. IIGI + GLP-2 infusion (day E) resulted in a glucagon response in the midrange between the glucagon responses to OGTT and IIGI. Our results indicate that the intestinal hormones, GIP, GLP-1, and GLP-2, may play a role in the inappropriate glucagon response to orally ingested glucose in T2DM with, especially, GIP, acting to increase glucagon secretion.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.  相似文献   

3.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

4.
The incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that act via the enteroinsular axis to potentiate insulin secretion from the pancreas in a glucose-dependent manner. Both GLP-1 receptor and GIP receptor knockout mice (GLP-1R(-/-) and GIPR(-/-), respectively) have been generated to investigate the physiological importance of this axis. Although reduced GIP action is a component of type 2 diabetes, GIPR-deficient mice exhibit only moderately impaired glucose tolerance. The present study was directed at investigating possible compensatory mechanisms that take place within the enteroinsular axis in the absence of GIP action. Although serum total GLP-1 levels in GIPR knockout mice were unaltered, insulin responses to GLP-1 from pancreas perfusions and static islet incubations were significantly greater (40-60%) in GIPR(-/-) than in wild-type (GIPR(+/+)) mice. Furthermore, GLP-1-induced cAMP production was also elevated twofold in the islets of the knockout animals. Pancreatic insulin content and gene expression were reduced in GIPR(-/-) mice compared with GIPR(+/+) mice. Paradoxically, immunocytochemical studies showed a significant increase in beta-cell area in the GIPR-null mice but with less intense staining for insulin. In conclusion, GIPR(-/-) mice exhibit altered islet structure and topography and increased islet sensitivity to GLP-1 despite a decrease in pancreatic insulin content and gene expression.  相似文献   

5.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. Furthermore, human subjects with Type 2 diabetes exhibit relative resistance to the actions of GIP, but not GLP-1R agonists. The physiological importance of both incretins has been investigated through generation and analysis of incretin receptor knockout mice. Elimination of incretin receptor action in GIPR-/- or GLP-1R-/- mice produces only modest impairment in glucose homeostasis. Similarly, double incretin receptor knockout (DIRKO) mice exhibit normal body weight and normal levels of plasma glucagon and hypoglycemic responses to exogenous insulin. However, glucose-stimulated insulin secretion is significantly decreased following oral but not intraperitoneal glucose challenge in DIRKO mice and the glucose lowering actions of dipeptidyl peptidase-IV (DPP-IV) inhibitors are extinguished in DIRKO mice. Hence, incretin receptor signaling exerts physiologically relevant actions critical for glucose homeostasis, and represents a pharmacologically attractive target for development of agents for the treatment of Type 2 diabetes.  相似文献   

6.
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.  相似文献   

7.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.  相似文献   

8.
Incretins are hormones released by nutrients from the GI tract. They amplify glucose-induced insulin release. By raising circulating incretin levels, oral glucose provokes a higher insulin response than that resulting from intravenous glucose. The two most important incretin hormones are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). In patients with type 2 diabetes, the incretin effect is decreased, mainly due to loss of the GIP-regulated second phase of insulin secretion, and because of a decreased secretion of GLP-1. In addition to its insulinotropic effect, GLP-1 inhibits glucagon release, prolongs gastric emptying, and leads to decreases in body-weight, all of which explain the marked antidiabetogenic effect of this incretin hormone.  相似文献   

9.
Prolonged exposure of cells to an agonist of a G-protein-coupled receptor usually results in an attenuation of the cellular response. To elucidate the cellular mechanisms of sensitization or desensitization in an insulin secretory cell system (INS-1 cells), we investigated a regulatory link between G-protein alpha(s)- and alpha(i2)-subunits mRNA, their protein levels and insulin secretion as the biological effect using various compounds. Incubation with epinephrine (50 microM) for 8 h decreased alpha(s)- and alpha(i2)-mRNA levels to 58% and 72%, respectively, which is reversed after a longer incubation. From results using isoprenaline and the alpha2-agonist UK 14,304 epinephrine is shown to mediate its actions via alpha2- but not beta-adrenoceptors. The insulin inhibitory neuropeptide galanin (50 nM) caused a decrease of alpha(s)- and alpha(i2)-mRNA levels, whereas insulinotropic compounds (incretin hormones) such as GIP or GLP-1 (both 10 nM) led to an increase of alpha(s)- and alpha(i2)-mRNA levels. By using the Ca2+ channel blocker verapamil (50 microM) alpha(i2)-mRNA changes clearly depend on Ca2+ influx. The effects on alpha(i2)-mRNA were accompanied by a parallel, albeit weaker effect on the protein level (only GIP and UK 14,304 were investigated). The changes in alpha(i2)-mRNA levels by either compound were paralleled by inverse changes in insulin secretion: preincubation with UK 14,304 for 8 h led to an increased insulin secretion when challenged by either GLP-1, GIP or glucose (8.3 mM). This was similar for galanin, another potent inhibitor of insulin release. On the other hand, exposure to the incretins GIP or GLP-1 for 8 h induced a smaller insulin release when challenged afterwards by either UK 14,304, galanin, GIP, GLP-1, or glucose. Thus the influence on insulin secretion of various compounds is reciprocal to the regulation of alpha(i2)-mRNA levels but not alpha(s)-mRNA levels. There is, therefore, evidence from all the manoeuvres used that alpha(i2)-mRNA regulation may play a role in heterologous sensitization and desensitization of insulin secretion.  相似文献   

10.
BackgroundThe interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans.MethodsIn a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2 kcal/min over 120 min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon.ResultsPlasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P < 0.001 for each).ConclusionsCompared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the ‘gut-incretin’ axis than carbohydrate.  相似文献   

11.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

12.
Insulinotropic gut-derived hormones (incretins) play a significant role in the regulation of glucose homeostasis in healthy subjects and are responsible for 50-70% of insulin response to a meal. The main mediators of the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). However, in patients with type 2 diabetes the effect of incretins action is to a large extent impaired, which seems to explain disturbed secretional activity of beta cells in pancreatic islets. Detailed analysis of incretin defect proved that GIP secretion remains within physiological limits, whereas GLP-1 secretion is significantly decreased. Nevertheless, GLP-1 insulinotropic effect is preserved and GIP effect is significantly impaired. In consequence, substitutional GLP-1 administration aiming at the reduction of its deficiency, seems to be logical therapeutic management, because despite a physiologically retained quantity response from GIP, resistance to this peptide is frequently found. Therefore, particularly promising are the results of clinical studies with the use of GLP-1 analogues , GLP-1 receptors activation, as well as the inhibitors of dipeptidyl peptidase-IV (DPP IV), the enzyme responsible for incretin proteolysis, which restores the proper function of the intestinal-pancreatic axis in subjects with type 2 diabetes and creates new possibilities of a glycaemia reducing therapy and improvement in quality of life in this group of patients.  相似文献   

13.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

14.
Recent Studies have demonstrated that glucagon-like peptide-1 (GLP)(7-37) has more potent insulinotropic activity than glucagon. We therefore examined the effect of GLP-1(7-37) on liver metabolism using rat liver perfusion system. Ten nM GLP-1(7-37) did not affect glucose, ketone body and cAMP outputs from the perfused liver. Whereas, the same dose of glucagon stimulated these outputs significantly. When 10 nM GLP-1(7-37) perfused 5 min before the administration of 10 nM glucagon, the above stimulatory effects of glucagon were not affected. These results indicate that truncated GLP-1 has no effect on hepatic glycogenolysis and ketogenesis dissociating from its potent insulinotropic activity.  相似文献   

15.
The two major incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP), are currently being considered as prospective drug candidates for treatment of type 2 diabetes. Interest in these gut hormones was initially spurred by their potent insulinotropic activities, but a number of other antihyperglycaemic actions are now established. One of the foremost barriers in progressing GLP-1 and GIP to the clinic concerns their rapid degradation and inactivation by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV). Here, we compare the DPP IV resistance and biological properties of Abu8/Abu2 (2-aminobutyric acid) substituted analogues of GLP-1 and GIP engineered to impart DPP IV resistance. Whereas (Abu8)GLP-1 was completely stable to human plasma (half-life >12 h), GLP-1, GIP, and (Abu2)GIP were rapidly degraded (half-lives: 6.2, 6.0, and 7.1 h, respectively). Native GIP, GLP-1, and particularly (Abu8)GLP-1 elicited significant adenylate cyclase and insulinotropic activity, while (Abu2)GIP was less effective. Similarly, in obese diabetic (ob/ob) mice, GIP, GLP-1, and (Abu8)GLP-1 displayed substantial glucose-lowering and insulin-releasing activities, whereas (Abu2)GIP was only weakly active. These studies illustrate divergent effects of penultimate amino acid Ala8/Ala2 substitution with Abu on the biological properties of GLP-1 and GIP, suggesting that (Abu8)GLP-1 represents a potential candidate for future therapeutic development.  相似文献   

16.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

17.
We studied interactive effects of insulinotropic GLP-1 and insulinostatic ghrelin on rat pancreatic islets. GLP-1 potentiated glucose-induced insulin release and cAMP production in isolated islets and [Ca(2+)](i) increases in single β-cells, and these potentiations were attenuated by ghrelin. Ghrelin suppressed [Ca(2+)](i) responses to an adenylate cyclase activator forskolin. Moreover, GLP-1-induced insulin release and cAMP production were markedly enhanced by [D-lys(3)]-GHRP-6, a ghrelin receptor antagonist, in isolated islets. These results indicate that both exogenous and endogenous islet-derived ghrelin counteracts glucose-dependent GLP-1 action to increase cAMP production, [Ca(2+)](i) and insulin release in islet β-cells, positioning ghrelin as a modulator of insulinotropic GLP-1.  相似文献   

18.
19.
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of enteroendocrine cells located in the proximal small intestine. Many effects of Xen are mediated by neurotensin receptor-1 on neurons. In healthy humans with normal glucose tolerance (NGT), Xen administration causes diarrhea and inhibits postprandial glucagon-like peptide-1 (GLP‐1) release but not insulin secretion. This study determines (i) if Xen has similar effects in humans with Roux-en-Y gastric bypass (RYGB) and (ii) whether neural pathways potentially mediate effects of Xen on glucose homeostasis.Eight females with RYGB and no history of type 2 diabetes received infusions with 0, 4 or 12 pmol Xen/kg/min with liquid meals on separate occasions. Plasma glucose and gastrointestinal hormone levels were measured and insulin secretion rates calculated. Pancreatic polypeptide and neuropeptide Y levels were surrogate markers for parasympathetic input to islets and sympathetic tone, respectively. Responses were compared to those in well-matched non-surgical participants with NGT from our earlier study.Xen similarly increased pancreatic polypeptide and neuropeptide Y responses in patients with and without RYGB. In contrast, the ability of Xen to inhibit GLP-1 release and cause diarrhea was severely blunted in patients with RYGB. With RYGB, Xen had no statistically significant effect on glucose, insulin secretory, GLP-1, glucose-dependent insulinotropic peptide, and glucagon responses. However, insulin and glucose-dependent insulinotropic peptide secretion preceded GLP-1 release suggesting circulating GLP-1 does not mediate exaggerated insulin release after RYGB. Thus, Xen has unmasked neural circuits to the distal gut that inhibit GLP-1 secretion, cause diarrhea, and are altered by RYGB.  相似文献   

20.
Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. We performed DJB or sham surgery in GK and Wistar rats. Blood glucose levels and glucose tolerance were monitored, and the plasma insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured. β-Cell area, islet fibrosis, intestinal morphology, and the density of enteroendocrine cells expressing GLP-1 and/or GIP were quantified. Improved postprandial glycemia was observed from 3 mo after DJB in diabetic GK rats, persisting until 12 mo after surgery. Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号