首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Phialophora parasitica, an emerging pathogen   总被引:4,自引:0,他引:4  
Monoconidial cultures derived from 12 clinical and environmental isolates of Phialophora parasitica were compared with respect to morphologic and physiologic characteristics and response to antifungal agents. No yeast cells were seen in 1- and 3-week-old slide culture preparations. Also, not all of the distinguishing characteristics of this species were displayed by all isolates on all media examined. Although the isolates grew on Sabouraud agar with chloramphenicol and cycloheximide, some inhibition was observed. All cultures were strongly urease-positive and hydrolyzed casein and starch; most decomposed tyrosine but not gelatin. All but one environmental isolate grew well at both 23 and 37 degrees C, but none grew at 40 degrees C. In the sensitivity testing the isolates did not vary much in their response to each drug, although some anomalies were observed. Amphotericin B and miconazole had minimum inhibitory concentrations in the low sensitivity range (2.0-8.0 and 2.5-10 micrograms m-1 respectively), for most isolates, and most isolates were resistant to both 5-fluorocytosine and ketoconazole. Limited observations were made on three other Phialophora species which might be confused with P. parasitica.  相似文献   

2.
产碱性蛋白酶芽孢杆菌的鉴定   总被引:3,自引:0,他引:3  
通过测量比较在碱性蛋白平板上产生的蛋白水解圈直径,从土壤中筛选到一株高产蛋白酶菌株Bacillus sp.HFBL0079,根据生理生化特性、16S rDNA序列,鉴定为B.amyloliquefaciens。其最适培养温度为35°C-37°C,最适生长pH 8.0,在特定培养条件下16 h达到稳定期,菌体生长和蛋白酶合成同步进行。以大豆分离蛋白为氮源时发酵液具有最高酶活。发酵液在pH 10时具有最高酶活,表明为碱性蛋白酶。该菌株产生的碱性蛋白酶可水解多种天然蛋白质,对胶原蛋白水解度高于其他蛋白质,对羽毛角蛋白也有一定水解能力,提示该酶具有一定新颖性。  相似文献   

3.
A bank of pTV32 (Tn 917 lacZ) - generated Bacillus subtilis mutants were examined on milk agar for the ability to produce proteases at 48 degrees C. A single mutant, BUL786, was isolated, which could hydrolyze casein after overnight incubation at 48 degrees C. This mutant secreted protease 10 fold more at 48 degrees C when compared to 37 degrees C, and part of the activity appears to be 48 degrees C-specific. At high temperatures, other strains of B. subtilis, including hyperprotease secretors, were unable to secrete protease to any significant degree. The BUL786 strain is missing the 97K major heat shock protein. Since a number of other proteins also appear to be secreted at 48 degrees C, this mutant may be a hypersecretor of exported proteins at temperatures greater than 45 degrees C.  相似文献   

4.
A novel bacterial protease specifically hydrolyzing actin with the formation of a stable fragment with Mr of 36 kDa was obtained. This protease was shown to be synthesized at the stationary phase of bacterial culture growth. The actin hydrolysis by bacterial protease was inhibited by o-phenanthroline, EDTA and p-chloromercuribenzoate but not by N-ethyl-maleimide, phenylmethylsulfonylfluoride, Leu-peptin, pepstatin and other serine proteinase inhibitors. The protease was stable within the pH range of 4.5-8.5 and had an activity optimum at pH 7.0-8.0. The protease activity was maintained for 40 min at 45 degrees C and for 30 min at 50 degrees C; at 65 degrees C the enzyme was fully inactivated by 5 min heating. The protease preparations causing quantitative conversion of actin into a 36 kDa fragment did not hydrolyze casein, albumin, ovalbumin, lysozyme, DNAase I, RNAase, myosin, alpha-actinin, tropomyosin and troponin. It was assumed that the protease under consideration is a neutral metalloprotease specifically hydrolyzing actin.  相似文献   

5.
AIMS: The effects of water activity (0.90-0.99 a(w)), temperature (15-37 degrees C), and their interaction on growth and ochratoxin A (OTA) production by eight isolates of Aspergillus carbonarius were investigated on synthetic nutrient medium (SNM) with composition similar to grapes. METHODS AND RESULTS: Growth data were modelled by an multiple linear regression and response surface models were obtained. Aspergillus carbonarius grew much faster at 30 degrees C than at the other temperature levels tested and its growth rate increased with increasing a(w), maximum growth rate being between 0.95 and 0.99 a(w). In general, isolates grew faster at 35-37 degrees C than at 20 degrees C, although no significant differences were found between these temperatures. OTA accumulation was also favoured by high a(w) levels, and although it was observed in the whole range of temperatures, maximum amounts were detected at 20 degrees C. No OTA was found at the most unfavourable growth conditions. CONCLUSIONS: Optimum a(w) level for growth seems to correspond with optimum for OTA production, meanwhile the most propitious temperature for the toxin production was below the best one for growth. SIGNIFICANCE AND IMPACT OF THE STUDY: Prediction of A. carbonarius growth would allow estimating their presence and therefore, the OTA production, as it was found that conditions for the toxin production were more limited than those permitting growth.  相似文献   

6.
Sphingomonas species were commonly isolated from biofilms in drinking water distribution systems in Finland (three water meters) and Sweden (five water taps in different buildings). The Sphingomonas isolates (n = 38) were characterized by chemotaxonomic, physiological and phylogenetic methods. Fifteen isolates were designated to species Sphingomonas aromaticivorans, seven isolates to S. subterranea, two isolates to S. xenophaga and one isolate to S. stygia. Thirteen isolates represented one or more new species of Sphingomonas. Thirty-three isolates out of 38 grew at 5 degrees C on trypticase soy broth agar (TSBA) and may therefore proliferate in the Nordic drinking water pipeline where the temperature typically ranges from 2 to 12 degrees C. Thirty-three isolates out of 38 grew at 37 degrees C on TSBA and 15 isolates also grew on blood agar at 37 degrees C. Considering the potentially pathogenic features of sphingomonas, their presence in drinking water distribution systems may not be desirable.  相似文献   

7.
Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth.  相似文献   

8.
In the genus Klebsiella, the growth respnse in nutient broth at 10 degrees C correlates inversely with the operational definition of a fecal coliform and not merely with the ability to grow at 44.5 degrees C. Of the fecal coliform-positive Klebsiella, 97% did not grow at 10 degrees C after 72 h of incubation. Conversely, 97% of the fecal coliform-negative isolates grew at 10 degrees C. The amount of growth at 10 degrees C varied among the fecal coliform-negative isolates and was found to correlate with indole production and pectin liquefaction. Low-temperature growth associated with specific biochemical tests can be used to differentiate several groups in the genus Klebsiella. Three main groups were discerned. Group I consists of indole-negative, pectin-nonliquefying, fecal coliform-positive isolates that do not grow at 10 degrees C. Group II isolates are differentiated from group I by a fecal-coliform-negative response and growth at 10 degrees C. Group III are indole-positive, pectin-liquefying, fecal coliform-negative isolates that grow at 10 degrees C. In our culture collection, isolates of group I are most frequently of human/animal clinical origins, whereas isolates of groups II and III are predominantly derived from the environment.  相似文献   

9.
In the genus Klebsiella, the growth respnse in nutient broth at 10 degrees C correlates inversely with the operational definition of a fecal coliform and not merely with the ability to grow at 44.5 degrees C. Of the fecal coliform-positive Klebsiella, 97% did not grow at 10 degrees C after 72 h of incubation. Conversely, 97% of the fecal coliform-negative isolates grew at 10 degrees C. The amount of growth at 10 degrees C varied among the fecal coliform-negative isolates and was found to correlate with indole production and pectin liquefaction. Low-temperature growth associated with specific biochemical tests can be used to differentiate several groups in the genus Klebsiella. Three main groups were discerned. Group I consists of indole-negative, pectin-nonliquefying, fecal coliform-positive isolates that do not grow at 10 degrees C. Group II isolates are differentiated from group I by a fecal-coliform-negative response and growth at 10 degrees C. Group III are indole-positive, pectin-liquefying, fecal coliform-negative isolates that grow at 10 degrees C. In our culture collection, isolates of group I are most frequently of human/animal clinical origins, whereas isolates of groups II and III are predominantly derived from the environment.  相似文献   

10.
Characteristics of Yeasts Isolated from Pacific Crab Meat   总被引:5,自引:3,他引:2       下载免费PDF全文
A total of 202 cultures of yeasts were isolated and characterized from king crab and Dungeness crab meat. A yeastlike organism, resembling Aureobasidium pullulans, and 15 different species distributed among the genera Rhodotorula, Cryptococcus, Torulopsis, Candida, and Trichosporon were represented. Nine of the species grew at 5 C or lower. Although two of the species grew at 37 C, none of the isolates had the characteristics of pathogenic species. Members of the Cryptococcus and Candida failed to grow at 37 C. Furthermore, species of the former genus were not pathogenic to mice. The pigmentation of the Rhodotorula cultures decreased in intensity as the incubation temperature was decreased. Biochemical activities of the different species were studied by use of triglycerides, lecithin, and proteins (casein, gelatin, and crab-meat protein) as substrates. Eight of the species could attack triglycerides; eight, lecithin; five, gelatin; one, casein; and one, crab protein. An organism, tentatively identified as Trichosporon sp., was very active in attacking each of the substrates tested and grew well at 0.5 C.  相似文献   

11.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

12.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37 degrees C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 10(3) CFU of L. monocytogenes/ml and 10(5) CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37 degrees C for 24 h, 15 degrees C for 14 days, 8 degrees C for 21 days, and 4 degrees C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37 degrees C, two at 15 and 8 degrees C, and three at 4 degrees C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4 degrees C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log(10) CFU of L. monocytogenes/cm(2)). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37 degrees C.  相似文献   

13.
The M48 conserved family of peptidases contains a single catalytic zinc ion tetrahedrally co-ordinated by two histidines within an HEXXH motif. The proteases of this class are generally toxic to the cell and thus difficult to express and purify. Here, we report the expression and purification of the small HtpX-like heat shock metalloprotease from an unknown organism related to the obligate methylotrophic anaerobic bacterium, Methylobacillus flagellatus. The protease was expressed in the Escherichia coli vector - pT7. Optimization of expression was done to increase the yield and solubility of the expressed protein. Improved refolding procedures from inclusion bodies of pT7 E. coli system were devised to get the protease in an active and stable form. The protease was purified to near homogeneity in its active form from the refolded proteins of the inclusion bodies by a two-step (cation exchange followed by gel filtration) high performance liquid chromatography (HPLC). The purified protease was active on zymography and casein hydrolysis assays. The activity of the protease was found to be optimum at pH 7.4 and at a temperature of 37 degrees C but significant activity was also retained at higher temperatures of 45-50 degrees C. Centrifugal fractionation showed that it is a membrane localized endopeptidase. The methods described here can serve as guidelines to express and purify other homologues of M48 family of proteases for functional and structural studies.  相似文献   

14.
Clostridium perfringens type A isolates can carry the enterotoxin gene (cpe) on either their chromosome or a plasmid, but food poisoning isolates usually have a chromosomal cpe gene. This linkage between chromosomal cpe isolates and food poisoning has previously been attributed, at least in part, to better high-temperature survival of chromosomal cpe isolates than of plasmid cpe isolates. In the current study we assessed whether vegetative cells and spores of chromosomal cpe isolates also survive better than vegetative cells and spores of plasmid cpe isolates survive when the vegetative cells and spores are subjected to low temperatures. Vegetative cells of chromosomal cpe isolates exhibited about eightfold-higher decimal reduction values (D values) at 4 degrees C and threefold-higher D values at -20 degrees C than vegetative cells of plasmid cpe isolates exhibited. After 6 months of incubation at 4 degrees C and -20 degrees C, the average log reductions in viability for spores of plasmid cpe isolates were about fourfold and about threefold greater, respectively, than the average log reductions in viability for spores from chromosomal cpe isolates. C. perfringens type A isolates carrying a chromosomal cpe gene also grew significantly faster than plasmid cpe isolates grew at 25 degrees C, 37 degrees C, or 43 degrees C. In addition, chromosomal cpe isolates grew at higher maximum and lower minimum temperatures than plasmid cpe isolates grew. Collectively, these results suggest that chromosomal cpe isolates are commonly involved in food poisoning because of their greater resistance to low (as well as high) temperatures for both survival and growth. They also indicate the importance of proper low-temperature storage conditions, as well as heating, for prevention of C. perfringens type A food poisoning.  相似文献   

15.
Streptomyces thermoviolaceus was grown in a chemostat under conditions of glutamate limitation. The effects of growth rate on production of the antibiotic granaticin, extracellular protein and protease activity as components of secondary metabolism were studied at 37, 45 and 50 degrees C. The amount of each secondary metabolite synthesized was highly dependent on growth rate and temperature. Granaticin yields were highest at growth rates of 0.1 to 0.15 h-1 at 37 degrees C, 0.175 h-1 at 45 degrees C and 0.045 h-1 at 50 degrees C. Protease activity of culture supernatants responded to low nutrient concentration and/or low growth rate. Measurements of extracellular protein revealed complex changes in amount which were dependent on growth rate and temperature. At 45 degrees C and a growth rate of 0.15 h-1, biomass yield was highest between pH 5.5 to 6.5 whereas granaticin synthesis was low at pH 5.5 and rose to highest values at between pH 6.5 and 7.5.  相似文献   

16.
AIMS: Psychrotrophic Gram-negative bacteria, such as Pseudomonas species, pose a significant spoilage problem in refrigerated meat and dairy products due to secretion of hydrolytic enzymes, especially lipases and proteases. This study characterized the enzymes produced by strains of Pseudomonas fluorescens isolated from pasteurized milk. METHODS AND RESULTS: Thirty-seven isolates of Ps. fluorescens from skimmed, semiskimmed and whole milk were all shown to be proteolytic and lipolytic on casein and tributyrin agar, respectively. The highest level of protease production by one isolate, SMD 31, from skimmed milk was in minimal salts medium containing 1 mmol x l(-1) calcium chloride at 20 degrees C. The proteases belonged to the class of metallo-proteases, as there was no residual activity with 10 mmol x l(-1) EDTA. They were heat stable and retained activity even after treatment at 121 degrees C for 20 min. One protease of 45-48 kDa was detected in unconcentrated supernatant fluid samples but, in three isolates from different milk sources, five proteases with molecular masses between 28 and 48 kDa were detected on a 12% zymogram casein gel following ultrafiltration. Attempts to purify the lipases proved unsuccessful. CONCLUSIONS: The characteristics of the major protease of 45-48 kDa correspond to those of proteases described for other Pseudomonas species isolated from a range of environments. However, the smaller proteases have not been described previously. SIGNIFICANCE AND IMPACT OF THE STUDY: In the absence of ultrafiltration the presence of the minor protease species may be missed and they may act as contaminants of the major protease in unpurified or semipurified samples.  相似文献   

17.
The aims of this study were to identify a psychrotrophic bacterium, strain CR41, producing a cold adapted protease during growth at low temperatures and to evaluate the ability of the cells to hydrolyze hake fish protein. The strain was isolated from the intestinal tract of hake collected from the San Jorge Gulf (Patagonia, Argentina) and it was identified as Pseudoalteromonas. Growth and fish protein hydrolysis were determined using an aerated simple mineral medium plus 10% fish protein concentrate. Proteolytic activity was measured at 7 and 22 degrees C during culture in the concentrate. Protease production started in the exponential growth phase and reached a maximum during stationary phase. Protease activity at 7 degrees C was lower than at 22 degrees C. After 8 h of incubation, the percentage of hydrolyzed protein was 84% at 7 degrees C and 95% at 22 degrees C. Electrophoresis detection showed that degradation of muscle hake proteins was complete at both temperatures, and in gelatin zymograms extracellular activity showed two proteolytic bands with apparent molecular masses of approximately 31.6 and 62 kDa.  相似文献   

18.
We report the isolation and properties of several species of bacteria from Siberian permafrost. Half of the isolates were spore-forming bacteria unable to grow or metabolize at subzero temperatures. Other Gram-positive isolates metabolized, but never exhibited any growth at - 10 degrees C. One Gram-negative isolate metabolized and grew at - 10 degrees C, with a measured doubling time of 39 days. Metabolic studies of several isolates suggested that as temperature decreased below + 4 degrees C, the partitioning of energy changes with much more energy being used for cell maintenance as the temperature decreases. In addition, cells grown at - 10 degrees C exhibited major morphological changes at the ultrastructural level.  相似文献   

19.
A novel protease, hydrolyzing azocasein, was identified, purified, and characterized from the culture supernatant of the fish pathogen Yersinia ruckeri. Exoprotease production was detected at the end of the exponential growth phase and was temperature dependent. Activity was detected in peptone but not in Casamino Acid medium. Its synthesis appeared to be under catabolite repression and ammonium control. The protease was purified in a simple two-step procedure involving ammonium sulfate precipitation and ion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified protein indicated an estimated molecular mass of 47 kDa. The protease had characteristics of a cold-adapted protein, i.e., it was more active in the range of 25 to 42 degrees C and had an optimum activity at 37 degrees C. The activation energy for the hydrolysis of azocasein was determined to be 15.53 kcal/mol, and the enzyme showed a rapid decrease in activity at 42 degrees C. The enzyme had an optimum pH of around 8. Characterization of the protease showed that it required certain cations such as Mg(2+) or Ca(2+) for maximal activity and was inhibited by EDTA, 1,10-phenanthroline, and EGTA but not by phenylmethylsulfonyl fluoride. Two N-methyl-N-nitro-N-nitrosoguanidine mutants were isolated and analyzed; one did not show caseinolytic activity and lacked the 47-kDa protein, while the other was hyperproteolytic and produced increased amounts of the 47-kDa protein. Azocasein activity, SDS-PAGE, immunoblotting by using polyclonal anti-47-kDa-protease serum, and zymogram analyses showed that protease activity was present in 8 of 14 strains tested and that two Y. ruckeri groups could be established based on the presence or absence of the 47-kDa protease.  相似文献   

20.
Small subunit 16S rRNA sequences, growth temperatures, and phylogenetic relationships have been established for 129 bacterial isolates recovered under aerobic growth conditions from different regions of a 22-m ice core from the Muztag Ata Mountain glacier on the Pamirs Plateau (China). Only 11% were psychrophiles (grew at 2 degrees C or -2 degrees C up to approximately 20 degrees C), although the majority (82%) were psychrotolerant (grew at 2 degrees C or -2 degrees C up to 37 degrees C). The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 85% to 100% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G+C (HGC) gram-positive bacteria, 23.3% were gamma-Proteobacteria, 14.7% were alpha-Proteobacteria, 14.7% were Flavobacteria, and 4.7% were low-G+C (LGC) gram-positive bacteria. There were clear differences in the depth distribution, with Proteobacteria, HGC/Cytophaga-Flavobacterium-Bacteroides (CFB), Proteobacteria, LGC/CFB/HGC, Cryobacterium psychrophilum, HGC/CFB, Proteobacteria/HGC/CFB, and HGC/CFB being the predominant isolates from ice that originated from 2.7 to 3.8, 6.2, 7.5, 8.3, 9.0, 9.7, 12.5, and 15.3 m below the surface, respectively. This layered distribution of bacterial isolates presumably reflects both differences in bacteria inhabiting the glacier's surface, differences in bacteria deposited serendipitously on the glacier's surface by wind and snowfall, and nutrient availability within the ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号