首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pterospora andromedea, a mycoheterotroph, has been shown to form obligate symbioses with only three species of Rhizopogon in section Amylopogon: R. salebrosus, R. arctostaphyli and an undescribed molecular taxon. Sarcodes sanguinea, another my coheterotroph in Ericaceae, and sister taxon to Pterospora andromedea, has been found to form symbioses with two species of Rhizopogon in section Amylopogon: R. ellenae and R. subpurpurascens. To date no overlap has been recorded between these two achlorophyllous plants and their associated mycobionts. Tissue from Pterospora andromedea rootballs and Rhizopogon spp. basidiocarps were collected from the Greater Yellowstone Ecosystem. The mycobionts were identified using sequence analysis of the ITS locus and compared with sequences of Rhizopogon spp. section Amylopogon from GenBank. Sequences of two additional loci, ATP6 and RPB2 were also generated and analyzed. In addition to Rhizopogon salebrosus, Pterospora andromedea was found for the first time in association with a fourth mycobiont, Rhizopogon ellenae, a known associate of Sarcodes sanguinea. The discovery of a new symbiont may provide evidence for an undiscovered lineage of Pterospora andromedea inhabiting the Greater Yellowstone Ecosystem. In addition, overlap in obligate mycobionts between closely related mycoheterotrophs provides interesting new information on the phylogenetic history and coevolution of the mycoheterotrophs in the Monotropoideae (Ericaceae).  相似文献   

2.
Sarcodes sanguinea is a nonphotosynthetic mycoheterotrophic plant that obtains all of its fixed carbon from neighboring trees through a shared ectomycorrhizal fungus. We studied the spatial structuring of this tripartite symbiosis in a forest where Sarcodes is abundant, and its only fungal and photosynthetic plant associates are Rhizopogon ellenae and Abies magnifica, respectively. We found disproportionately high concentrations of Abies roots adjacent to Sarcodes roots compared to the surrounding soil. Rhizopogon ellenae colonizes the vast majority of those Abies roots (86-98%), and its abundance tends to decrease with increasing distance from Sarcodes plants. At 500 cm from Sarcodes plants we did not detect R. ellenae, and the ectomycorrhizal community instead was dominated by members of the Russulaceae and Thelephoraceae, which are commonly dominant in other California pinaceous forests. The highly clumped distribution of Abies-R. ellenae ectomycorrhizas indicates that Sarcodes plants either establish within pre-existing clumps, or they stimulate clump formation. Several lines of evidence favor the latter interpretation, suggesting an unexpected mutualistic aspect to the symbiosis. However, the mechanism involved remains unknown.  相似文献   

3.
We provide a preliminary report of the mycobionts found within four Monotropoideae (Ericaceae) species from China: Monotropa uniflora, Hypopitys monotropa, Monotropastrum humile and Monotropastrum sciaphilum (a rare endemic species never previously studied for mycorrhizae). Such achlorophyllous Monotropoideae plants obtain their carbohydrates from mycorrhizal fungi linking them to surrounding trees, on which these fungi form ectomycorrhizae. Since Monotropoideae were rarely studied in continental Asia, the root systems of the four species sampled in Yunnan were examined using morphological and molecular methods. All the roots of these four species exhibit a typical monotropoid mycorrhizal morphology, including a fungal mantle, a Hartig net and hyphal pegs. In M. uniflora and M. humile mycorrhizae, cystidia typical of Russula symbionts covered the fungal mantle. ITS barcoding revealed that Russulales were the most frequent colonizers in all species, but Hypopitys monotropa displayed various additional mycorrhizal taxa. Moreover, a few additional ectomycorrhizal and saprotrophic Basidiomycota taxa were identified in the three other species, challenging that these four Monotropoideae species are as strictly fungal specific as the other Monotropoideae species hitherto studied. Moreover, a comparison with accompanying fungus sporocarps revealed that the fruiting fungal community significantly differed from that associated with the Monotropoideae roots, so that a clear fungal preference was evident. Finally, four fungal species were found on more than one Monotropoideae species: this contrasted with previous reports of sympatrically growing mycoheterotrophic plants, which did not reveal any overlap. This again challenges the idea of strict fungal specificity.  相似文献   

4.
The Monotropoideae (Ericaceae) are non-photosynthetic angiosperms that obtain fixed carbon from basidiomycete ectomycorrhizal fungi. In previous work, we showed that each plant species is associated with a single genus or a set of closely related genera of ectomycorrhizal fungi. Here we show that the level of specificity is much higher. We used a molecular phylogenetic approach to contrast specificity patterns among eight plant lineages and three fungal genera. We relied on fungal nuclear internal transcribed spacer (nrITS) sequence data obtained from 161 basidiocarps and 85 monotropoid roots representing 286 sampled plants screened using restriction length polymorphisms. From the phylogenetic placement of fungal symbionts in fungal phylograms, we found that three basal (Sarcodes, Pterospora, Pleuricospora) and one derived lineage (Allotropa) of plants target narrow clades of closely related species groups of fungi, and four derived lineages (Monotropa hypopithys species group, Pityopus) target more distant species groups. Within most plant lineages, geography and photobiont association constrain specificity. Specificity extended further in Pterospora andromedea, in which sequence haplotypes at the plastid trn L-F region of 73 plants were significantly associated with different fungal species groups even in sympatry. These results indicate that both the macro- and microevolution of the Monotropoideae are tightly coupled to their mycorrhizal symbionts.  相似文献   

5.
The morphology and anatomy of ectomycorrhizas of Rhizopogon arctostaphyli , R. ellenae , R. flavofibrillosus , R. occidentalis , R. rubescens , R. smithii , R. subcaerulescens and R. truncatus synthesized on Ponderosa pine ( Pinus ponderosa ) in glasshouse conditions using spore slurries, are described and compared. All species produced a well-developed Hartig net, and a well-developed fungal mantle. The mantles of R. arctostaphyli , R. smithii and R. subcaerulescens ectomycorrhizas were two-layered with outer mantle hyphae of wider diameter than inner mantle hyphae. The mantle of R. subcaerulescens ectomycorrhizas also had distinctive peg-like structures (cystidia) along peripheral hyphae. Rhizopogon truncatus ectomycorrhizas were tuberculate in morphology and had a rind-like mantle enclosing adjacent roots. In addition, several species exhibited crystal inclusions in the outer mantle, presumably at the interface between mantle and soil.  相似文献   

6.
Yang S  Pfister DH 《Mycologia》2006,98(4):535-540
Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations.  相似文献   

7.
Rhizopogon (Basidiomycota, Boletales) is a genus of hypogeous fungi that form ectomycorrhizal associations mostly with members of the Pinaceae. This genus comprises an estimated 100(+) species, with the greatest diversity found in coniferous forests of the Pacific northwestern United States. Maximum parsimony analyses of 54 nuclear ribosomal DNA internal transcribed spacer (ITS) sequences including 27 Rhizopogon and 10 Suillus species were conducted to test sectional relationships in Rhizopogon and examine phylogenetic relationships with the closely related epigeous genus, Suillus. Sequences from 10 Rhizopogon type collections were included in these analyses. Rhizopogon and Suillus were both monophyletic. Rhizopogon section Rhizopogon is not monophyletic and comprised two clades, one of which consisted of two well supported lineages characterized by several long insertions. Rhizopogon sections Amylopogon and Villosuli formed well supported groups, but certain species concepts within these sections were unresolved. Four species from section Fulviglebae formed a strongly supported clade within section Villosuli. Subgeneric taxonomic revisions are presented.  相似文献   

8.
Like other myco-heterotrophic plants, Pterospora andromedea (pinedrops) is dependent upon its specific fungal symbionts for survival. The rarity of pinedrops fungal symbiont was investigated in the eastern United States where pinedrops are rare. Wild populations of eastern pinedrops were sampled, and the plant haplotypes and fungal symbionts were characterized with molecular techniques; these data were compared to those from the West with phylogenetic analyses. The frequency of the fungal symbiont in eastern white pine forests was assessed using a laboratory soil bioassay and in situ pinedrops seed baiting. Only one plant haplotype and fungal symbiont was detected. The plant haplotype was not unique to the East. The fungal symbiont appears to be a new species within the genus Rhizopogon, closely related to the western symbionts. This fungal species was not frequent in soils with or without pinedrops, but was less frequent in the latter and in comparison to the fungal symbionts in western forests. Seed baiting resulted in few germinants, suggesting that mycelial networks produced by the eastern fungal symbiont were rare. Results suggest that eastern pinedrops rarity is influenced by the distribution and rarity of its fungal symbiont.  相似文献   

9.
The morphology and anatomy of ectomycorrhizas of Rhizopogon parksii , Rhizopogon vinicolor and Rhizopogon subcaerulescens , and a hypogeous relative, Truncocolumella citrina , synthesized on Douglas fir in glasshouse conditions using spore slurries as inoculum, are described and compared. Mycorrhizas formed with R. parksii and R. vinicolor did not exhibit their characteristic subtuberculate morphology in these tests, but rather had a pinnate form. All species had diagnostic features of ectomycorrhizas: a well-developed Hartig net and a fungal mantle. In addition, several species exhibited crystal inclusions in the outer mantle, usually at the interface between the mantle and soil. Truncocolumella citrina had crystal-like inclusions within the mantle but external to fungal hyphae, a feature rarely described in ectomycorrhizas.  相似文献   

10.
This study examines evidence for a particular arbutoid mycorrhizal interaction in páramo, a high-altitude neotropical ecosystem important in hydrological regulation but poorly known in terms of its fungal communities. Comarostaphylis arbutoides Lindley (Ericaceae) often forms dense thickets in Central American páramo habitats. Based on phylogenetic classification, it has been suggested that C. arbutoides forms arbutoid mycorrhizae with diverse Basidiomycetes and Ascomycetes; however, this assumption has not previously been confirmed. Based on field data, we hypothesized an arbutoid mycorrhizal association between C. arbutoides and the recently described bolete Leccinum monticola Halling & G.M. Mueller; in this study, we applied a rigorous approach using anatomical and molecular data to examine evidence for such an association. We examined root samples collected beneath L. monticola basidiomes for mycorrhizal structures, and we also compared rDNA internal transcribed spacer (ITS) sequences between mycorrhizal root tips and leaf or basidiome material of the suspected symbionts. Root cross sections showed a thin hyphal sheath and intracellular hyphal coils typical of arbutoid mycorrhizae. DNA sequence comparisons confirmed the identity of C. arbutoides and L. monticola as the mycorrhizal symbionts. In addition, this paper provides additional evidence for the widespread presence of minisatellite-like inserts in the ITS1 spacer in Leccinum species (including a characterization of the insert in L. monticola) and reports the use of an angiosperm-specific ITS primer pair useful for amplifying plant DNA from mycorrhizal roots without co-amplifying fungal DNA.  相似文献   

11.
Tuberculate ectomycorrhizae (TECM) are unique structures in which aggregates of ectomycorrhizal roots are encased in a covering of fungal hyphae. The function of TECM is unknown, but they probably enhance the nitrogen nutrition and disease resistance of host plants. Trees in the Pinaceae form TECM with species of Rhizopogon and Suillus (Suillineae, Boletales). Similar tubercules are found with diverse angiosperms, but their mycobionts have not been phylogenetically characterized. We collected TECM in Mexico and the USA that were similar to TECM in previous reports. We describe these TECM and identify both the plant and fungal symbionts. Plant DNA confirms that TECM hosts are Quercus species. ITS sequences from tubercules and sclerotia (hyphal aggregations that serve as survival structures) matched sporocarps of Boletus rubropunctus. Phylogenetic analyses confirm that this fungus belongs to the suborder Boletineae (Boletales). This is the first published report of TECM formation in the Boletineae and of sclerotia formation by a Boletus species. Our data suggest that the TECM morphology is an adaptive feature that has evolved separately in two suborders of Boletales (Suillineae and Boletineae) and that TECM formation is controlled by the mycobiont because TECM are found on distantly related angiosperm and gymnosperm host plants.  相似文献   

12.
Our primary goal was to determine whether detection of Rhizopogon internal transcribed spacer (ITS) groups is affected by the pine species used in seedling bioassays. Our secondary goal was to investigate composition of Rhizopogon spore banks in the Eastern Sierra Nevada of California, a previously unsampled region. We used seedlings of Pinus contorta, Pinus jeffreyi, Pinus lambertiana, and Pinus muricata as bioassay plants and identified the Rhizopogon retrieved by internal transcribed spacer (ITS) sequence analysis. We found that each of the pine species retrieved all of the abundant Rhizopogon ITS groups, but there were significant differences among pines in the richness of Rhizopogon ITS groups recovered. Pinus muricata recovered all ITS groups found in this study and was significantly better than P. lambertiana. Rhizopogon communities from the five sampled sites contained six to eight ITS groups per site, with two unique sequence groups and a higher abundance of the Rhizopogon ellenae and Rhizopogon arctostaphyli groups than at previously sampled sites. These results show high cross-receptivity between Rhizopogon and pine species, and regional patterns in spore bank composition.  相似文献   

13.
All members of the Monotropoideae (Ericaceae), including the species, Allotropa virgata and Pleuricospora fimbriolata, are mycoheterotrophs dependent on associated symbiotic fungi and autotrophic plants for their carbon needs. Although the fungal symbionts have been identified for A. virgata and P. fimbriolata, structural details of the fungal–root interactions are lacking. The objective of this study was, therefore, to determine the structural features of these plant root–fungus associations. Root systems of these two species did not develop dense clusters of mycorrhizal roots typical of some monotropoid species, but rather, the underground system was composed of elongated rhizomes with first- and second-order mycorrhizal adventitious roots. Both species developed mantle features typical of monotropoid mycorrhizas, although for A. virgata, mantle development was intermittent along the length of each root. Hartig net hyphae were restricted to the host epidermal cell layer, and fungal pegs formed either along the tangential walls (P. fimbriolata) or radial walls (A. virgata) of epidermal cells. Plant-derived wall ingrowths were associated with each fungal peg, and these resembled transfer cells found in other systems. Although the diffuse nature of the roots of these two plants differs from some members in the Monotropoideae, the structural features place them along with other members of the Monotropoideae in the “monotropoid” category of mycorrhizas.  相似文献   

14.
The Monotropoideae (Ericaceae) are nonphotosynthetic plants that obtain fixed carbon from their fungal mycorrhizal associates. To infer the evolutionary history of this symbiosis we identified both the plant and fungal lineages involved using a molecular phylogenetic approach to screen 331 plants, representing 10 of the 12 described species. For five species no prior molecular data were available; for three species we confirmed prior studies which used limited samples; for five species all previous reports are in conflict with our results, which are supported by sequence analysis of multiple samples and are consistent with the phylogenetic patterns of host plants. The phylogenetic patterns observed indicate that: (i) each of the 13 plant phylogenetic lineages identified is specialized to a different genus or species group within five families of ectomycorrhizal Basidiomycetes; (ii) mycorrhizal specificity is correlated with phylogeny; (iii) in sympatry, there is no overlap in mature plant fungal symbionts even if the fungi and the plants are closely related; and (iv) there are geographical patterns to specificity.  相似文献   

15.
16.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

17.
Microbial symbionts are instrumental to the ecological and long‐term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species‐rich lichen‐forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study.  相似文献   

18.
Mycotrophism occurs in two ericaceous subfamilies, the Monotropoideae and the Pyroloideae. However, three aspects of the evolution of these subfamilies remain equivocal; 1) morphological, biochemical, and molecular analyses have failed to establish that the Monotropoideae is monophylectic; 2) the relationships among members of the Monotropoideae remain unresolved; 3) it is unclear whether the Pyroloideae should be included as a subfamily within the Ericaceae or treated as a separate family. To address these topics a phylogeny was constructed using a portion of the 28S ribosomal RNA gene from 22 members of the Ericaceae. Results indicate that the present Monotropoideae is polyphyletic; one species, Monotropsis ordata, is more closely related to members of the Vaccinioideae than to the rest of the Monotropoideae. This arrangement is supported by consideration of mycorrhizal type, consequently multiple origins of mycotrophic parasitism must be assumed. The relationships depicted within the Monotropoideae are nearly congruent with those depicted in Copeland's (1941) phylogeny, and morphological or biochemical characters are identified which support the relationships depicted by the molecular tree which do not agree with the morphological tree. In addition, the data indicate, although not strongly, that the Pyroloideae should be included within the Ericaceae.  相似文献   

19.
云南松幼苗上红菇类菌根真菌的物种多样性及其菌根形态   总被引:2,自引:0,他引:2  
以滇中1~2年生云南松幼苗为研究对象,观察鉴定与其共生的红菇属真菌外生菌根。形态观察发现了6种形态型(morphotypes)。本文对这6种形态型的外观和显微特征进行了详细描述,尤其强调了菌套形态特征。对rDNAITS片段比对分析表明,6种形态型对应6种红菇属真菌,它们分别是与Russula li-vescens、R.violeipes、R.densifolia、R.nigricans、R.sanguinea及R.nauseosa相近的红菇种类。本研究表明,形成的菌根及其菌套和囊状体的特征在红菇属真菌的系统分支间表现出较为稳定的差异。这一研究与前人对该属真菌的菌根形态及分类学研究基本吻合。红菇属真菌是云南松1~2年幼苗期的主要共生真菌类群。  相似文献   

20.
程书秋  毕志树  李崇   《广西植物》1986,(4):285-293+329
本文报道了69种外生菌根与19种树木联系所形成的菌根形态及其微观的初步分析  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号