首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.
  • 1 We asked three questions about the patterns of relative abundance of insect herbivores across host plant taxa at a palo verde hybrid zone. (1) What is the morphological structure of the hybrid zone and does this suggest a certain pattern of introgression? (2) How are putative parental seed defence mechanisms expressed in hybrid plants? (3) Do ovipositing females prefer host plant taxa on which their offspring have best survivorship?
  • 2 Morphologically, hybrids were either intermediate or tended to resemble one parental species. Previous studies have suggested that unidirectional introgression results in loss of parental defence mechanisms against herbivores. Hybrid plants in general lacked seed coat resistance and early pod abscission which are known to act as plant defence mechanisms against bruchid beetles in the parental palo verde trees.
  • 3 All other sources of bruchid mortality that we examined did not vary across parental and hybrid taxa, with the possible exception of egg parasitism which occurred at a lower frequency on one parental palo verde species.
  • 4 Thus, survivorship of bruchid offspring should be greater on hybrid palo verdes.
  • 5 Patterns of egg densities suggested that females may prefer hybrid hosts in some years but not others. An oviposition choice experiment conducted in the field, however, showed bruchids have no preference for hybrids over one of the parental species.
  • 6 These results suggest that some insect herbivores may have higher densities on hybrid host plants because they are less resistant.
  相似文献   

2.
Krebs C  Gerber E  Matthies D  Schaffner U 《Oecologia》2011,167(4):1041-1052
Hybridization has been proposed as a mechanism by which exotic plants can increase their invasiveness. By generating novel recombinants, hybridization may result in phenotypes that are better adapted to the new environment than their parental species. We experimentally assessed the resistance of five exotic Fallopia taxa, F. japonica var. japonica, F. sachalinensis and F. baldschuanica, the two hybrids F. × bohemica and F. × conollyana, and the common European plants Rumex obtusifolius and Taraxacum officinale to four native European herbivores, the slug Arion lusitanicus, the moth Noctua pronuba, the grasshopper Metrioptera roeselii and the beetle Gastrophysa viridula. Leaf area consumed and relative growth rate of the herbivores differed significantly between the Fallopia taxa and the native species, as well as among the Fallopia taxa, and was partly influenced by interspecific variation in leaf morphology and physiology. Fallopia japonica, the most abundant Fallopia taxon in Europe, showed the highest level of resistance against all herbivores tested. The level of resistance of the hybrids compared to that of their parental species varied depending on hybrid taxon and herbivore species. Genotypes of the hybrid F. × bohemica varied significantly in herbivore resistance, but no evidence was found that hybridization has generated novel recombinants that are inherently better defended against resident herbivores than their parental species, thereby increasing the hybrid’s invasion success. In general, exotic Fallopia taxa showed higher levels of herbivore resistance than the two native plant species, suggesting that both parental and hybrid Fallopia taxa largely escape from herbivory in Europe.  相似文献   

3.
To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly different communities. Second, species richness was significantly greatest on hybrids (F1 > F2 > E. amygdalina > E. risdonii). These results are similar to those from a wild population of the same species and represent the first case in which both synthetic and wild population studies confirm a genetic component to community structure. Hybrids also acted as centers of biodiversity by accumulating both the common and specialist taxa of both parental species (100% in the wild and 80% in the synthetic population). Third, species richness was significantly greater on F1s than the single F2 family, suggesting that the increased insect abundance on hybrids may not be caused by the breakup of coadapted gene complexes. Fourth, specialist arthropod taxa were most likely to show a dominance response to F1 hybrids, whereas generalist taxa exhibited a susceptible response. Fifth, in an analysis of 31 leaf terpenoids that are thought to play a role in plant defense, hybrids were generally intermediate to the parental chemotypes. Within the single F2 family, we found significant associations between the communities of individual trees and five individual oil components, including oil yield, demonstrating that there is a genetic effect on plant defensive chemistry that, in turn, may affect community structure. These studies argue that hybridization has important community-level consequences and that the genetic variation present in hybrid zones can be used to explore the genetic-based mechanisms that structure communities.  相似文献   

4.
ABSTRACT: BACKGROUND: In food-deceptive orchids of the genera Anacamptis, Neotinea and Orchis floral isolation has been shown to be weak, whereas late-acting reproductive barriers are mostly strong, often restricting hybridization to the F1 generation. Only in a few species hybridization extends beyond the F1 generation, giving rise to hybrid swarms. However, little is known about the abundance of later-generation hybrids and what factors drive their occurrence in hybrid populations. In this study, molecular analyses were combined with detailed morphological measurements in a hybrid population of two closely related Orchis species (Orchis militaris and O. purpurea) to investigate the hypothesis that the abundance of later-generation hybrids is driven by changes in floral characters after hybridization that exert selective pressures that in turn affect hybridization. RESULTS: Both the molecular and morphological data point to extensive genetic and morphological homogenization and asymmetric introgression. Estimating genomic clines from the multi-locus genotype data and testing for deviation from neutrality revealed that 30 out of 113 (27%) AFLP markers significantly deviated from neutral expectations. Plants with large floral displays or plant with flowers that resembled more O. purpurea had higher female fitness than plants with small floral displays or plants with flowers resembling more O. militaris, suggesting that directional selection may have contributed to the observed patterns of introgression. CONCLUSIONS: These results indicate that in closely related orchid species hybridization and gene introgression may be partly driven by selection for floral traits of one of the parental types. However, because some pure individuals were still present in the studied population, the parental species appeared to be sufficiently isolated to survive the challenge of sympatry.  相似文献   

5.
The performance of hybrids depends upon the inheritance and expression of resistance traits. Secondary chemicals are one such resistance trait. In this study, we measured the concentrations of phenolic glycosides and condensed tannins in parental and F1 hybrid willows to examine the sources of chemical variation among hybrids. S. sericea produces phenolic glycosides, salicortin and 2'-cinnamoylsalicortin, and low concentrations of condensed tannin in its leaves. In contrast, S. eriocephala produces no phenolic glycosides but high concentrations of condensed tannins in its leaves. These traits are inherited quantitatively in hybrids. On average, F1 hybrids are intermediate for condensed tannins, suggesting predominantly additive inheritance or balanced ambidirectional dominance of this defensive chemical from the parental species. In contrast, the concentration of phenolic glycosides is lower than the parental midpoint, indicating directional dominance. However, there is extensive variation among F1 hybrids. The concentration of tannin and phenolic glycosides in F1 hybrid families is either (1) lower than the midpoint, (2) higher than the midpoint, or (3) indistinguishable from the midpoint of the two parental taxa. It appears that the production of the phenolic glycosides, especially 2'-cinnamoylsalicortin, is controlled by one or more recessive alleles. We also observed a two-fold or greater difference in concentration between some hybrid families. We discuss how chemical variation may effect the relative susceptibility of hybrid willows to herbivores.  相似文献   

6.
Fallopia japonica (Japanese knotweed, Polygonaceae) is a well-known East Asian perennial that is established throughout the U.S. and Europe. Another congener, F. sachalinensis, and their hybrid, F. ×bohemica, also persist on both continents. Their invasive success is primarily attributed to their ability to spread via clonal growth. However, mounting evidence suggests invasion history and dynamics differ between continents and that sexual reproduction is more common than previously assumed. We used published morphological traits designed to distinguish the three taxa to characterize their distribution in 24 New England towns. We found continuous variation of all five traits, with 84% of our 81 individuals having at least one trait outside parental limits. Hierarchical cluster analysis, along with two chloroplast and one nuclear species-specific markers, suggests the presence of intercrossing, segregating hybrids, and likely introgression between F1 hybrids and F. japonica. Our markers also show the first evidence of bidirectional hybridization between parental taxa in the U.S., emphasizing the complex structure of populations in our region. This study is a first step toward unraveling the evolutionary forces that have made these taxa such aggressive invaders in the U.S. The data may also affect management strategies originally designed for largely monomorphic, clonal populations.  相似文献   

7.
Hybridization may lead to unique phytochemical expression in plant individuals. Hybrids may express novel combinations or extreme concentrations of secondary metabolites or, in some cases, produce metabolites novel to both parental species. Here we test whether there is evidence for extreme metabolite expression or novelty in F1 hybrids between Senecio aquaticus and Senecio jacobaea. Hybridization is thought to occur frequently within Senecio, and hybridization might facilitate secondary metabolite diversification within this genus. Parental species express different quantities of several classes of compounds known to be involved in antiherbivore defence, including pyrrolizidine alkaloids, chlorogenic acid, flavonoids and benzoquinoids. Hybrids demonstrate differential expression of some metabolites, producing lower concentrations of amino acids, and perhaps flavonoids, than either parental species. Despite evidence for quantitative hybrid novelty in this system, NMR profiling did not detect any novel compounds among the plant groups studied. Metabolomic profiling is a useful technique for identifying qualitative changes in major metabolites according to plant species and/or genotype, but is less useful for identifying small differences between plant groups, or differences in compounds expressed in low concentrations.  相似文献   

8.
Although often considered as evolutionary dead ends, selfing taxa may make an important contribution to plant evolution through hybridization with related outcrossing lineages. However, there is a shortage of studies examining the evolutionary dynamics of hybridization between outcrossing and selfing taxa. On the basis of differential pollinator attractiveness, production and competitive ability of pollen, as well as levels of inbreeding depression, we predict that the early products of hybridization between outcrossing and selfing lineages will be F1s and first-generation backcrosses sired mainly by the outcrossing lineage, together with selfed F2s containing a limited genetic contribution from the outcrosser. These predictions were tested using amplified fragment length polymorphism and chloroplast markers to analyze the composition of a recent hybrid swarm between predominantly outcrossing Geum rivale and predominantly selfing Geum urbanum. In line with predictions, the hybrid swarm comprised both parental species together with F1s and first-generation backcrosses to G. rivale alone. Chloroplast data suggested that G. rivale was the pollen parent for both observed hybrid classes. However, there was no evidence for F2 individuals, despite the fact that the F1 was fully self-compatible and able to auto-pollinate. The pollen fertility of F1s was only 30% lower than that of the parental taxa, and was fully restored in backcross hybrids. Predicting future evolution in the hybrid swarm will require an understanding of the mating patterns within and among the mix of parental, F1 and backcross genotypes that are currently present. However, these results support the hypothesis that introgression is likely to be asymmetrical from selfing to outcrossing lineages.  相似文献   

9.
Czesak ME  Knee MJ  Gale RG  Bodach SD  Fritz RS 《Heredity》2004,93(6):619-626
Hybrid plants often differ in resistance to arthropods compared to the parental species from which they are derived. To better understand the relative contribution of genetic effects in influencing plant resistance to arthropods, we examined the genetic architecture of resistance in a willow hybrid system, Salix eriocephala, S. sericea, and their interspecific hybrids. Resistance to two arthropods, a willow leaf aphid (Chaitophorus sp.: Aphididae) and an eriophyoid mite (Aculops tetanothrix: Eriophyidae), were compared because resistance to different herbivores may be controlled by different traits and influenced by different genetic effects. We found additive and nonadditive genetic effects to be important in explaining the difference between willow species in resistance to aphids and mites. F2 hybrids exhibited low resistance to aphids, suggesting breakdown of favourable epistatic interactions that confer resistance. F2 hybrids, however, exhibited high resistance to mites, suggesting either the breakdown of interactions that affect traits used by mites in host location or the creation of favourable epistatic interactions. This study demonstrates the potential role of herbivores in affecting plant genetic structure, such that selection by herbivores can potentially lead to the creation of gene interactions that influence host resistance traits or host recognition traits used by the herbivore.  相似文献   

10.
Hybrid bridges to gene flow: a case study in milkweeds (Asclepias)   总被引:1,自引:0,他引:1  
Natural hybridization occurs throughout areas of sympatry for the North American milkweeds Asclepias exaltata and A. syriaca (Asclepiadaceae), even though the formation of F1 hybrid seed is a rare event. For introgressive hybridization to proceed, F1 and advanced hybrids must be released from reproductive barriers and successfully mate with one or both parental species. I investigated the mating system of natural hybrids between A. exaltata and A. syriaca in three populations in Shenandoah National Park, Virginia. Allozyme data and a maximum-likelihood procedure were used to estimate the frequency of six genotypic classes (parentals, F1, F2, and backcrosses) of the hybridizing populations, the pollinia received by hybrid plants, and the paternal parents of seeds produced by hybrids. F1 hybrids, backcross A. syriaca, and parental A. syriaca individuals were common in three hybrid populations. Even though self-pollinations and interhybrid pollinations were common, F2 seed production and the occurrence of F2 individuals were rare in hybrid populations. Hybrid plants received more pollen from A. syriaca than A. exaltata, which resulted in the production of more backcross-A. syriaca seed than backcross-A. exaltata seed. Asclepias exaltata was rare in the hybrid populations, but A. exaltata pollinia were received by hybrids and this species sired between 15% and 36% of the seeds produced on hybrids. The potential for introgression with A. exaltata populations is lower because this species is unsuccessful as the maternal parent in interspecific and backcross hand-pollinations. The asymetry of hybridization with A. syriaca as the maternal parent is further supported by the incorporation of maternally inherited chloroplast DNA markers in hybrids. Hybrid milkweeds frequently backcross with both parental species and may be released from the reproductive barriers that limit the formation of F1 hybrids in natural populations. The direction of interspecific gene flow and introgression in milkweeds is influenced by the reproductive biology of hybrids, the constituency of the surrounding population, and failure of some crosses to produce seeds. Finally, introgressive hybridization remains an important evolutionary force even when the initial formation of F1 hybrids in natural populations is rare.  相似文献   

11.
We performed a common garden experiment using parental, F1, F2, and backcross willow hybrids to test the hypothesis that hybrid willows experience breakdown of resistance to herbivores. After exposing plants to herbivores in the field, we measured the densities/damage caused by 13 insect herbivores and one herbivorous mite. Using joint-scaling tests, we determined the contribution of additive, dominance, and epistasis to variation in susceptibility to herbivores (measured either as density or damage level) among the six genetic classes. We found the genetic architecture of susceptibility/resistance in the parental species to be complex, involving additive, dominance, and epistasis for each herbivore species. Although genic interactions altered plant susceptibility for each of the 14 herbivores, three distinct patterns of response of herbivores to hybrids were expressed. One pattern, observed in four herbivore species, supported the hypothesis of breakdown of resistance genes in recombinant hybrids. A second pattern, shown by six other herbivore species, supported the hypothesis of hybrid breakdown of host recognition genes. In other words, epistatic interactions for host recognition traits (probably oviposition/feeding stimulants or attractants) appeared to be important in determining herbivore abundance for those six species. The final patterns supported a structure of dominance, either for host recognition traits (in the case of three herbivore species) or for host resistance traits (for one herbivore species). The combination of differing responses of herbivore species, including members of the same genus and tribe, and the ubiquitous importance of epistasis suggests that many genes affect herbivore resistance in this hybrid willow system.  相似文献   

12.
Because they are ubiquitous and typically reduce the fitness of hosts, parasites may play important roles in hybrid zone dynamics. Despite much work on herbivores and hybrid plants, the effect of parasites on the fitness of animal hybrids is poorly known. In an attempt to partly fill this gap, we examined the prevalence of avian haemosporidians Haemoproteus in a hybrid zone between collared Ficedula albicollis and pied flycatchers F. hypoleuca . 40 species-informative genetic markers allowed us to identify F1 hybrids, thus avoiding problems inherent in many studies that group hybrid genotypes. Furthermore, naturally occurring extra-pair paternity allowed us to test the immune responses of pure and hybrid nestlings to a novel antigen (phytohaemagglutinin) in a shared environment. In contrast to previous suggestions that animal hybrids may more often display resistance against parasites than plant hybrids, F1 hybrids exhibited prevalence of parasitism and immune responses that were intermediate between the two parental species. We also detected differences between the two parental species in their prevalence of infection, with the competitively dominant species (collared flycatcher) being less often infected by Haemoproteus . Overall, our results contribute to other recent data supporting the idea that the resistance of animals to parasites is variously and unpredictably affected by hybridization, and that there is a concordance in the general patterns observed in plants and animals. Haemosporidians in avian hybrids provide a useful system for investigating the interactions between hosts and parasites that characterize host contact zones.  相似文献   

13.
Genomic introgression among divergent taxa following human-mediated secondary contact is a growing concern for the management and conservation of aquatic biodiversity. We simulated the composition of taxa following admixture and hybridization by independently altering three variables: (1) initial proportion of parental taxa following secondary contact; (2) fitness gradients among parental and introgressant taxa; and, (3) strength of assortative mating among these taxa. Ultimately, we established that parental taxa will trend toward extinction as introgression proceeds in spite of even a heavy fitness penalty for the hybrids. Also, the number of generations required (rate) to reach an arbitrarily determined threshold of extinction (< 5.0%) was inversely related to the strength of the relative fitness gradients among parental and derivative hybridized lineages. Moreover, the rates of extinction for parental taxa depended on the initial relative proportions in the admixture with rare taxa going extinct more rapidly than abundant taxa. Finally, the strength of assortative mating (as an evolved or reinforced mechanism of pre-mating isolation) will affect the rate of extinction. Introgressive hybridization, therefore, emerges as an important risk to structural biodiversity wherever divergent, yet reproductively compatible, taxa come together naturally or are brought together through human activities.  相似文献   

14.
Natural hybridization can lead to various evolutionary outcomes in plants, including hybrid speciation and interspecific gene transfer. It can also cause taxonomic problems, especially in plant genera containing multiple species. In this study, the hybrid status of Melastoma affine, the most widespread taxon in this genus, and introgression between its putative parental species, M. candidum and M. sanguineum, were assessed on two sites, Hainan and Guangdong, using 13 SSR markers and sequences of a chloroplast intergenic spacer. Bayesian-based STRUCTURE analysis detected two most likely distinct clusters for the three taxa, and 76.0% and 73.9% of the morphologically identified individuals of M. candidum and M. sanguineum were correctly assigned, respectively. 74.5% of the M. affine individuals had a membership coefficient to either parental species between 0.1 and 0.9, suggesting admixture between M. candidum and M. sanguineum. Furthermore, NewHybrids analysis suggested that most individuals of M. affine were F2 hybrids or backcross hybrids to M. candidum, and that there was extensive introgression between M. candidum and M. sanguineum. These SSR data thus provides convincing evidence for hybrid origin of M. affine and extensive introgression between M. candidum and M. sanguineum. Chloroplast DNA results were consistent with this conclusion. Much higher hybrid frequency on the more disturbed Guangdong site suggests that human disturbance might offer suitable habitats for the survival of hybrids, a hypothesis that is in need of further testing.  相似文献   

15.
Hybridization is known to be involved in a number of evolutionary processes, including species formation, and the generation of novel defence characteristics in plants. The genus Senecio of the Asteraceae family is highly speciose and has historically demonstrated significant levels of interspecific hybridization. The evolution of novel chemical defence characteristics may have contributed to the success of Senecio hybrids. Chemical defence against pathogens and herbivores has been studied extensively in the model species Senecio jacobaea, which is thought to hybridize in nature with Senecio aquaticus. Here, we use amplified fragment length polymorphisms (AFLPs) and pyrrolizidine alkaloid (PA) composition to confirm that natural hybridization occurs between S. jacobaea and the closely related species S. aquaticus. AFLPs are also used to estimate the ancestry of hybrids. We also demonstrate that even highly back-crossed hybrids can possess a unique mixture of defence chemicals specific to each of the parental species. This hybrid system may therefore prove to be useful in further studies of the role of hybridization in the evolution of plant defence and resistance.  相似文献   

16.
Spaak  Piet 《Hydrobiologia》1997,360(1-3):127-133
Within the species complex of Daphnia galeata,D. cucullata and D. hyalina variouscombinations of hybrids and parental taxa occur inlakes throughout Europe. Since daphnids are cyclicparthenogens and mostly reproduce asexually, hybridpopulations can be maintained by asexual reproductionand without recurrent hybridization events. Therefore,it is possible that hybridization events have beenrare, with range expansion occurring by dispersal ofhybrids.Allozyme data from seven European populations wereused to compare genetic variation within and betweenhybrid and parental taxa. An UPGMA cluster analysis ofgenetic distances showed that D. cucullata × galeatahybrids from different lakes grouped indifferent clusters according to the lake from whichthey were isolated, suggesting multiple hybridizationevents. Clonal diversity within hybrid taxa wascomparable to parental taxa. Furthermore, evidence wasfound for introgression of the Pgi-S allele fromD. cucullata to D. galeata in three lakes.These results indicate that multiple hybridizationevents within this species complex are likely, andthat hybrid taxa can reproduce sexually.  相似文献   

17.
? Premise of the study: Exceptions to the ideal of complete reproductive isolation between species are commonly encountered in diverse plant, animal, and fungal groups, but often the causative ecological processes are poorly understood. In flowering plants, the outcome of hybridization depends in part on the effectiveness of pollinators in interspecific pollen transport. In the Asclepias exaltata and A. syriaca (Apocynaceae) hybrid zone in Shenandoah National Park, Virginia, extensive introgression has been documented. The objectives of this study were to (1) determine the extent of pollinator overlap among A. exaltata, A. syriaca, and their hybrids and (2) identify the insect taxa responsible for hybridization and introgression. ? Methods: We observed focal plants of parental species and hybrids to measure visitation rate, visit duration, and per-visit pollinia removal and deposition, and we calculated pollinator effectiveness and importance. ? Key results: Visitation rates varied significantly between the 2 yr of the study. Overall, Apis mellifera, Bombus sp., and Epargyreus clarus were the most important pollinators. However, Bombus sp. was the only visitor that was observed to both remove and insert pollinia for both parent species as well as hybrids. ? Conclusions: We conclude that Bombus may be a key agent of hybridization and introgression in these sympatric milkweed populations, and hybrids are neither preferred nor selected against by pollinators. Thus, we have identified a potential mechanism for how hybrids act as bridges to gene flow between A. exaltata and A. syriaca. These results provide insights into the breakdown of prezygotic isolating mechanisms.  相似文献   

18.
Abstract 1. Many Salicaceae species naturally form hybrid swarms with parental and hybrid taxa that differ in secondary chemical profile and in resistance to herbivores. Theoretically, the differential mortality in the seedling stage can lead to changes in trait expression and alter subsequent interactions between plants and herbivores. This study examines whether herbivory by the generalist slug Arion subfuscus, which causes extensive mortality in young willow seedlings, causes shifts in (a) the foliar chemistry of F2 willow hybrids (Salix sericea and Salix eriocephala), and (b) the subsequent susceptibility to Japanese Beetles, Popillia japonica. 2. In 2001, two populations of F2 seedlings were generated: those that survived slug herbivory (80–90% of seedlings placed in the field were killed by the slugs) were designated as S-plants, whereas C-plants (controls) experienced no mortality. 3. Common garden experiments with cuttings from these populations, in 2001 and 2002, revealed extensive variation in the phenolic chemistry of F2 hybrids, but revealed no significant difference between S- and C-plants, although the levels of foliar nutrients, proteins and nitrogen tended to be higher in S-plants. 4. Concentrations of salicortin and 2′-cinnamoylsalicortin explained 55 and 38% of the the variation in leaf damage caused by Japanese beetles, and secondary chemistry was highly correlated within replicate clones (salicortin R2= 0.85, 2-cinnamoylsalicortin R2= 0.77, condensed tannins R2= 0.68). 5. Interestingly, Japanese beetle damage and condensed tannins were positively correlated within the S-plants, but not in the C-plants, suggesting that slugs had selected for plants with a positive relationship between tannins and P. japonica damage. This is unlikely to be a consequence of a preference for tannins, but is suggested to be related to the elevated nutrient levels in the S-plants, perhaps in combination with the complex-binding properties of tannins. 6. The damage was highly correlated within replicate clones and a model choice analysis suggested that Japanese beetle damage may be explained by four factors: concentrations of salicortin, condensed tannins, and nitrogen, as well as the specific leaf area (thick leaves were damaged less).  相似文献   

19.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild ( Raphanus raphanistrum ) and four hybrid radish populations ( R. raphanistrum  ×  Raphanus sativus ) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.  相似文献   

20.
Most models of hybridization assume that hybrids are less fit than their parental taxa. In contrast, some researchers have explored the possibility that hybrid individuals may actually have higher fitness and so play an important role in the generation of new species or adaptations. By estimating age-specific fitness components, we can determine not only how hybrid fitness differs from parental taxa, but also whether the fitness of hybrids relative to parental taxa changes with age. Here we describe an analysis of age-specific fitness traits in two species of Drosophila, D. pseudoobscura and D. persimilis, and their F1 hybrids. At early ages, hybrid females lay as many eggs as parental individuals, on average, but produce far fewer offspring. By late ages, in contrast, parental taxa show a steep decline in production not seen in hybrids, such that hybrids produce more offspring, on average, than parental taxa. Furthermore, egg-adult survival in hybrids is negatively correlated with egg density, whereas these traits are only weakly correlated in parental taxa. The results are limited somewhat by the fact that we analyze only two strains, and that these may be partially inbred. Nonetheless, the results are certainly illustrative, pointing out not only that at least some hybrid individuals may be as fit or fitter than parental taxa, but also that the difference between hybrids and parental taxa varies with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号