首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental changes of amino acids in ovine fetal fluids   总被引:3,自引:0,他引:3  
We recently reported an unusual abundance of arginine (4-6 mM) in porcine allantoic fluid during early gestation. However, it is not known whether such high concentrations of arginine are unique for porcine allantoic fluid or whether they represent an important physiological phenomenon for mammals. The present study was conducted to test the hypothesis that arginine is also the most abundant amino acid in ovine allantoic fluid. Allantoic and amniotic fluids, as well as fetal and maternal plasma samples, were obtained from ewes between Days 30 and 140 of gestation. Glycine was the most abundant amino acid in maternal uterine arterial plasma, representing approximately 25% of total alpha-amino acids. Alanine, glutamine, glycine, plus serine contributed approximately 50% of total alpha-amino acids in fetal plasma. Fetal:maternal plasma ratios for amino acids varied greatly, being less than 1 for glutamate during late gestation, 1.5-3 for most amino acids throughout gestation, and greater than 10 for serine during late gestation. Marked changes were observed in amino acid concentrations in amniotic and allantoic fluids associated with conceptus development. Concentrations of alanine, citrulline, and glutamine in allantoic fluid increased by 20-, 34-, and 18-fold, respectively, between Days 30 and 60 of gestation and were 24.7, 9.7, and 23.5 mM, respectively, on Day 60 of gestation (compared with 0.8 mM arginine). Remarkably, alanine, citrulline, plus glutamine accounted for approximately 80% of total alpha-amino acids in allantoic fluid during early gestation. Serine (16.5 mM) contributed approximately 60% of total alpha-amino acids in allantoic fluid on Day 140 of gestation. These novel findings of the unusual abundance of traditionally classified nonessential amino acids in allantoic fluid raise important questions regarding their roles in ovine conceptus development.  相似文献   

2.
3.
4.
5.
Required for a nematode's reproduction in a chemically defined medium are the nine mammalian essential amino acids (sensu strictu). Needed in addition to lysine, tryptophane, histidine, phenylalanine, leucine, isoleucine, threonine, methionine, and valine is arginine which is marginally essential for mammals. Tyrosine, nonessential for mammals, is not absolutely required by the nematode but is beneficial in terms of onset time and quantity of reproduction. Aspartic acid, nonessential for the nematode and mammals, is toxic for adult nematodes at and above 4.8 mg/ml medium. The nematode, Neoaplectana glaseri, is parasitic in insect grubs but the strain used has been cultivated in species isolation on kidney slices continuously since (1944).  相似文献   

6.
Gramicidin induces a marked Na+-dependent efflux of amino acids from Ehrlich cells. In absence of Na+, gramicidin does not alter the efflux. In presence of gramicidin, glycine efflux is inhibited by methionine and less so by leucine. Glycine efflux caused by HgCl2 is neither Na+ dependent nor inhibitable by amino acids. Neither efflux of inositol which is transported by an Na+-dependent route, nor efflux of several other solutes which are transported by Na+-independent routes, is affected by gramicidin. The antibiotic appears to permit a reversal in the direction of the operation of the Na+-dependent amino acid transport system. The increased efflux is partly, but not entirely, due to an increase in the cellular Na+ concentration and a reduction of the electrochemical potential difference for Na+.  相似文献   

7.
Nitrosomonas europaea is capable of incorporating exogenously supplied amino acids. Studies in whole cells revealed that at least eight amino acids are actively accumulated, probably by the action of three different transport systems, each with high affinity ( molar range) for several amino acids. Evidence for the action of secondary mechanisms of transport was obtained from efflux, counterflow and exchange experiments. More detailed information was obtained from studies in liposomes in which solubilized integral membrane proteins of N. europaea were incorporated. Uptake of l-alanine in these liposomes could be driven by artificially imposed pH gradients and electrical potentials, but not by chemical sodium-ion gradients. These observations indicate that l-alanine is transported by a H+/alanine symport system. The ecological significance of secondary amino acid transport systems in autotrophic ammonium-oxidizing bacteria is discussed.  相似文献   

8.
9.
10.
Aging is associated with a gradual decline in skeletal muscle mass and strength leading to increased risk for functional impairments. Although basal rates of protein synthesis and degradation are largely unaffected with age, the sensitivity of older muscle cells to the anabolic actions of essential amino acids appears to decline. The major pathway through which essential amino acids induce anabolic responses involves the mammalian target of rapamycin (mTOR) Complex 1, a signaling pathway that is especially sensitive to regulation by the branched chain amino acid leucine. Recent evidence suggests that muscle of older individuals require increasing concentrations of leucine to maintain robust anabolic responses through the mTOR pathway. While the exact mechanisms for the age-related alterations in nutritional signaling through the mTOR pathway remain elusive, there is increasing evidence that decreased sensitivity to insulin action, reductions in endothelial function, and increased oxidative stress may be underlying factors in this decrease in anabolic sensitivity. Ensuring adequate nutrition, including sources of high quality protein, and promoting regular physical activity will remain among the frontline defenses against the onset of sarcopenia in older individuals.  相似文献   

11.
The transport of glycine, L-alanine, L-proline, L-leucine, L-lysine, L-phenylalanine and L-glutamic acid did not enhance in various strains of Candida cells, when they were grown in proline containing medium or preincubated with proline. However, under similar conditions, a significant enhancement in the level of accumulation of amino acids (derepression) was observed in Saccharomyces cerevisiae X-2180-A2 (GAP+) cells, which was sensitive to ammonium ions (NH4+). As expected, the derepression was absent in GAP- cells of S. cerevisiae X-2180 (GAP- mutant). In contrast to S. cerevisiae (GAP+) cells, the increase in few amino acids uptake in different Candida strains, grown in proline or preincubated in proline, could not be inhibited by cycloheximide, NH4+ or their D-stereoisomers. It appears that derepression of amino acids transport, a well known phenomenon in S. cerevisiae, may not exist in Candida species.  相似文献   

12.
13.
Among a number of amino acids tested, l-lysine and l-arginine are the principal attractants in the chemotaxis of the zygotes of Allomyces arbuscula. The reaction can be stimulated to a greater or lesser extent by a number of compounds chemically related to l-leucine. No relationship between transport of attracting amino acids and their effect on chemotaxis has been found.  相似文献   

14.
The photosynthetic purple sulfur bacterium, Chromatium vinosum, takes up the amino acids, L-phenylalanine and L-leucine, via two apparently different electrogenic, H+/amino acid symports. Na+ serves as an allosteric modulator for leucine transport, lowering the Km for leucine from 66 to 15 microM. C. vinosum cells also contain a system that transports both isoleucine and valine. The isoleucine/valine system has the attributes of a H+/amino acid symport at pH less than 7.5 but appears to function as a H+/Na+ (Li+)/amino acid symport at pH greater than or equal to 7.5. Na+ gradients produce an allosteric lowering of the Km values for both isoleucine and valine, from 14 to 7 microM and from 34 to 17 microM, respectively. C. vinosum also accumulates D-alanine in an energy-dependent reaction. The transport process appears to involve the electrogenic cotransport of D-alanine and Na+. The Km value for D-alanine was determined to be 9 microM. Unlike the previously characterized C. vinosum L-alanine/Na+ symport, Na+ gradients did not affect the Km for D-alanine transport. L-Alanine and glycine, but not alpha-aminoisobutyric acid, act as competitive inhibitors for D-alanine transport.  相似文献   

15.
This study was conducted using the piglet model to test the hypothesis that mucosal cells of the neonatal small intestine can degrade nutritionally essential amino acids (EAA). Enterocytes were isolated from the jejunum of 0-, 7-, 14-, and 21-day-old pigs, and incubated for 45 min in Krebs buffer containing plasma concentrations of amino acids and one of the following L-[1-14C]- or L-[U-14C]-amino acids plus unlabeled tracees at 0.5, 2, or 5 mM: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine. In these cells, branched-chain amino acids (BCAA) were extensively transaminated and 15–50% of decarboxylated branched-chain α-ketoacids (BCKA) were oxidized to CO2 depending on the age of piglets. BCAA transamination increased but their decarboxylation decreased between 0 and 14 days of age. Addition of 1 and 2 mM α-ketoglutarate to incubation medium dose-dependently stimulated BCAA transamination without affecting their decarboxylation. Western blot analysis revealed that the abundance of mitochondrial BCAA aminotransferase declined but cytosolic BCAA aminotransferase increased between 0 and 14 days of age, with the cytosolic protein being the major isoform in 7- to 21-day-old pigs. BCKA dehydrogenase protein existed primarily as the phosphorylated (inactive) form in enterocytes of newborn pigs and its levels were markedly reduced in older pigs. All measured parameters of BCAA metabolism did not differ between 14- and 21-day-old pigs. In contrast to BCAA, catabolism of methionine and phenylalanine was negligible and that of other EAA was absent in enterocytes from all ages of piglets due to the lack of key enzymes. These results indicate that enterocytes are an important site for substantial degradation of BCAA but not other EAA in the neonatal gut.  相似文献   

16.
Gramicidin induces a marked Na+-dependent efflux of amino acids from Ehrlich cells. In absence of Na+, gramicidin does not alter the efflux. In presence gramicidin, glycine efflux is inhibited by methionine and less so by leucine. Glycine efflux caused by HgCl2 is neither Na+ dependent nor inhibitable by amino acids. Neither efflux of inositol which is transported by an Na+-dependent route, nor efflux of several other solutes which are transported by Na+-independent routes, is affected by gramicidin. The antibiotic appears to permit a reversal in the direction of of the operation of the Na+-dependent amino acid transport system. The increased efflux is partly, but not entirely, due to an increase in the cellular Na+ concentration and a reduction of the electrochemical potential difference for Na+.  相似文献   

17.
A novel tracer technique is presented for the simultaneous and independent measurement of multiple stable isotopically labeled essential fatty acids. Gas chromatography/negative chemical ionization mass spectrometry was employed for high sensitivity detection of the following isotopes: deuterium-labeled-linolenate, carbon-13-U-labeled-eicosapentaenoate, carbon-13-U-labeled-linoleate, and deuterium-labeled-dihomo-gamma-linolenate. These isotope-labeled fatty acids in vehicle oil were given to rats either singly or together as a single oral dose. Rat blood was collected after dosing and the isotopomers of the precursors and their main metabolites, including those containing both(13) C and (2)H, were detected simultaneously with good resolution and without interference from other isotopes due to differences in mass and chromatographic retention.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号