首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation and analysis of insertional mutations affecting mouse embryogenesis provides a powerful method to identify new genes that function in early development. In this paper, we describe an insertional mutation that interferes with postimplantation mouse development beginning at the time of gastrulation. Embryos homozygous for the H beta 58 transgenic insertion developed normally through the early postimplantation, egg cylinder stage (day 6.5 of development). At the primitive streak stage (day 7.5), however, they began to display characteristic abnormalities, including a retardation in the growth of the embryonic ectoderm (the earliest identifiable defect), and in some cases abnormalities of the amnion and chorion. Homozygotes continued to develop for 2-3 more days, reaching the size of a normal 8.5 day embryo, and formed tissues representative of all three germ layers, including several differentiated cell types. The site of insertion was mapped, by a combination of cytogenetic and genetic methods, to chromosome 10, and it appeared to define a new genetic locus. The inserted transgene provided a probe to clone and characterize the mutant locus, as well as the corresponding wild-type locus. In addition to an insertion of 10-20 copies of the transgene, the mutant locus contained a deletion of 2-3 kb of DNA found at the wild-type locus, and possibly an insertion of mouse repetitive DNA. However, genomic sequences on both sides of the insertion site remained co-linear in the wild-type and mutant genomes, and no chromosomal abnormalities could be detected. Five single copy DNA probes spanning the insertion site were tested for their ability to hybridize to RNA from 8.5 day embryos; one of the probes (located within the region deleted from the mutant chromosome) hybridized to a 2.7 kb mRNA encoded at the H beta 58 locus, thus identifying a gene whose disruption appears to be responsible for the mutant phenotype.  相似文献   

2.
Lim1 is a homeobox gene expressed in the extraembryonic anterior visceral endoderm and in primitive streak-derived tissues of early mouse embryos. Mice homozygous for a targeted mutation of Lim1 lack head structures anterior to rhombomere 3 in the hindbrain. To determine in which tissues Lim1 is required for head formation and its mode of action, we have generated chimeric mouse embryos and performed tissue layer recombination explant assays. In chimeric embryos in which the visceral endoderm was composed of predominantly wild-type cells, we found that Lim1(-)(/)(-) cells were able to contribute to the anterior mesendoderm of embryonic day 7.5 chimeric embryos but that embryonic day 9.5 chimeric embryos displayed a range of head defects. In addition, early somite stage chimeras generated by injecting Lim1(-)(/)(-) embryonic stem cells into wild-type tetraploid blastocysts lacked forebrain and midbrain neural tissue. Furthermore, in explant recombination assays, anterior mesendoderm from Lim1(-)(/)(-) embryos was unable to maintain the expression of the anterior neural marker gene Otx2 in wild-type ectoderm. In complementary experiments, embryonic day 9.5 chimeric embryos in which the visceral endoderm was composed of predominantly Lim1(-)(/)(-) cells and the embryo proper of largely wild-type cells, also phenocopied the Lim1(-)(/)(-) headless phenotype. These results indicate that Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation and that its inactivation in these tissues produces cell non-autonomous defects. We discuss a double assurance model in which Lim1 regulates sequential signaling events required for head formation in the mouse.  相似文献   

3.
4.
The cellular response to fibroblast growth factors (FGFs) is mediated by receptor tyrosine kinases (FGFR-1 - 4) whose patterns of expression are spatially and temporally restricted during embryogenesis. These receptors have differential ligand binding capacities and are coupled to diverse signalling pathways. In the present study, we have characterized the ability of FGFR-1-deficient mouse embryonic stem (ES) cells to bind FGF-2 and to proliferate in the absence or presence of exogenous FGF-2. Under the same conditions, we also analysed the differentiation of FGFR-1-deficient ES cells into three dimensional, post-implantation, embryonic tissues, known as embryoid bodies (EBs). We show that the targeted disruption of FGFR-1 leads to a reduced binding of FGF-2 which has no significant effect on the proliferation of undifferentiated ES cells. In addition, lack of functional FGFR-1 in differentiating EBs leads to a reduced expression of the endoderm marker gene alpha-fetoprotein (AFP). This deregulation of the AFP gene correlates with defects in the formation of the visceral endoderm, proper differentiation of the ectoderm and thus the organization of the columnar epithelium, and a block of cavitation. Although the addition of exogenous FGF-2 further reduced the expression of AFPmRNA in differentiating mutant EBs, corresponding morphological changes were not observed. Our results indicate that FGFR-1 may play a vital role in endoderm formation.  相似文献   

5.
6.
7.
8.
E D Adamson  S E Ayers 《Cell》1979,16(4):953-965
The location of type IV (basement membrane)collagen in early post-implantation mouse embryos was examined by immunoperoxidase reactions using a specific immunoglobulin raised against mouse lens capsule collagen. Reaction was positive in the earliest embryos studied--on the fifth day of gestation (the day of detection of the copulation plug is the first day). It was found only in the primitive endoderm adjacent to the blastocoelic cavity. Subsequently in development, strong staining reactions were found in the parietal endoderm, Reichert's membrane and an acellular layer which separates the visceral endoderm of the egg cylinder from the ectoderm. In tenth to eighteenth day visceral yolk sacs, the mesodermal portion was stained, which is consistent with the presence of basement membranes around blood vessels. The endodermal portion of the visceral yolk sac did not react, while small amounts were found in the amnion. By incubation of various embryonic tissues with tritiated amino acids, purification of the biosynthesized secreted collagens and their partial characterization, the differential expression of several collagen genes was detected. Identification of collagen types was made by: reaction with specific antibodies to type I and IV collagens; electrophoretic mobility; sensitivity to reduction and to collagenase; analysis of the proportions of 3-hydroxyproline, 4-hydroxyproline and hydroxylysine; and CNBr peptides. In agreement with the data of Minor et al. (1976a) for the rat, mouse parietal endoderm synthesizes large amounts of type IV collagen. In contrast to their findings, however, the 165,000 molecular weight polypeptide is not converted to one of 100,000 after reduction, alkylation and repepsinization (Dehm and Kefalides, 1978). The endoderm of the visceral yolk sac was shown to be synthesizing primarily type I collagen, while the mesoderm layer of this membrane synthesized both type I and IV collagens. Little or no type IV collagen synthesis was detected in the endoderm of the visceral yolk sac. If it is correct that the visceral endoderm of the early embryo makes a major contribution to the formation of the endoderm portion of the visceral yolk sac, then it is clear that a switch in collagen gene expression must occur as it does so.  相似文献   

9.
10.
Although much remains unknown about how the embryonic axis is laid down in the mouse, it is now clear that reciprocal interactions between the extraembryonic and embryonic lineages establish and reinforce patterning of the embryo. At early post-implantation stages, the extraembryonic ectoderm appears to impart proximal-posterior identity to the adjacent proximal epiblast, whereas the distal visceral endoderm signals to the underlying epiblast to restrict posterior identity as it moves anteriorward. At gastrulation, the visceral endoderm is necessary for specifying anterior primitive streak derivatives, which, in turn, pattern the anterior epiblast. Polarity of these extraembryonic tissues can be traced back to the blastocyst stage, where asymmetry has been linked to the point of sperm entry at fertilization.  相似文献   

11.
We previously demonstrated that a member of the Hedgehog gene family, Indian hedgehog (Ihh), is expressed in the visceral endoderm of EC and ES cell embryoid bodies and mouse embryos. Overexpression studies suggested that Ihh was involved in visceral endoderm differentiation. We now provide evidence for a Hh response in the embryoid body core and in the mesothelial layer of the visceral yolk sac. We also demonstrate that treatment of ES embryoid bodies with the Hh antagonists cAMP and forskolin results in downregulation of the Hh response and altered embryoid body differentiation. The outer endoderm layer undergoes a transition to parietal endoderm while formation of an embryonic ectoderm layer surrounding a cavity is inhibited. These treatments also result in a decrease in the expression of markers for the mesoderm derivatives, blood and endothelial cells. We present a model to explain how Ihh and BMP signaling may regulate extraembryonic endoderm and embryonic ectoderm differentiation.  相似文献   

12.
13.
In pregastrula stage mouse embryos, visceral endoderm (VE) migrates from a distal to anterior position to initiate anterior identity in the adjacent epiblast. This anterior visceral endoderm (AVE) is then displaced away from the epiblast by the definitive endoderm to become associated with the extra-embryonic ectoderm and subsequently contributes to the yolk sac. Little is known about the molecules that regulate this proximal displacement. Here we describe a role for mouse angiomotin (amot) in VE movements. amot expression is initially detected in the AVE and subsequently in the VE associated with the extra-embryonic ectoderm. Most amot mutant mice die soon after gastrulation with distinct furrows of VE located at the junction of the embryonic and extra-embryonic regions. Mutant analysis suggests that VE accumulation in these furrows is caused by defects in cell migration into proximal extra-embryonic regions, although distal-to-anterior movements associated with the epiblast, definitive endoderm formation, and anterior specification of the epiblast appear to be normal. These results suggest that amot acts within subregions of the VE to regulate morphogenetic movements that are required for embryo viability.  相似文献   

14.
Summary SPARC (secreted protein acidic and rich in cysteine), also known as osteonectin and BM-40, is a secreted protein associated with a variety of embryonic and adult tissue and cell types, including placenta, parietal and visceral endoderm, certain epithelia (e.g. gut, skin, glandular epithelia), and regions of active chondrogenesis and osteogenesis. Although much is known concerning the tissue distribution of this protein, neither the time and location of its initial appearance nor its functions during embryogenesis have been clearly established. We identified the location of SPARC on two-dimensional protein gels. By using two-dimensional gel analysis of both pre- and post-implantation stage mouse embryos, we find that SPARC is initially synthesized between 3.5 and 4.5 days of embryogenesis. This is the earliest time during development at which synthesis of SPARC has been demonstrated. Inner cell masses isolated from 4.5 day blastocysts synthesize SPARC indicating that either primitive ectoderm, primitive endoderm, or both produce this protein. SPARC synthesis is also detectable in isolated trophoblast vesicles. Thus, SPARC is synthesized not only in placenta, parietal endoderm, and visceral endoderm, but in the precursors of these tissues as well. Examination of 7.5 day embryos reveals that SPARC is synthesized in isolated parietal yolk sac and in whole extraembryonic and embryonic regions. Relative to other proteins, synthesis of SPARC was most prevalent in the parietal yolk sac. The possible implications of SPARC synthesis as early as 4.5 days are discussed.  相似文献   

15.
Using H253 mouse stock harboring X-linked HMG-lacZ transgene, we examined X chromosome inactivation patterns in sectioned early female embryos. X-gal staining patterns were generally consistent with the paternal X inactivation in the trophectoderm and the primitive endoderm cell lineages and random inactivation in the epiblast lineages. The occurrence of embryonic visceral endoderm cells apparently at variance with the paternal X chromosome inactivation in 7.5 dpc embryos was explained by the replacement of visceral endoderm cells with cells of epiblast origin. The frequency of cells negative for X-gal staining in 4.5-5.5 dpc XmXp* embryos fluctuated considerably especially in the extraembryonic ectoderm and the primitive endoderm, whereas it was less variable in the embryonic ectoderm. We could not, however, determine whether it is a normal phenomenon revealed for the first time by the use of HMG-lacZ transgene or an abnormality caused by the multicopy transgene.  相似文献   

16.
The albino deletion complex in the mouse represents 37 overlapping chromosomal deficiencies that have been arranged into at least twelve complementation groups. Many of the deletions cover regions of chromosome 7 that contain genes necessary for early embryonic development. The work reported here concentrates on two of these deletions (c6H, c11DSD), both of which were known to be lethal around the time of gastrulation when homozygous. A detailed embryological analysis has revealed distinct differences in the lethal phenotype associated with the c6H and c11DSD deletions. c6H homozygous embryos are grossly abnormal at day 7.5 of gestation, whereas c11DSD homozygous embryos appear abnormal at day 8.5 of gestation. There is no development of the extraembryonic ectoderm in c6H homozygotes, whereas extensive development of this tissue type occurs in c11DSD homozygotes. The visceral endoderm is abnormally shaped and the parietal endoderm appears to be overproduced in c6H homozygotes; these structures are not affected in c11DSD homozygotes. The embryonic ectoderm is runted in both types of embryo and it is not possible to obtain homozygous embryo-derived stem-cell lines for either deletion. Mesoderm formation occurs in the c11DSD but not in the c6H homozygotes. The c11DSD deletion chromosome complements the c6H chromosome in that the lethal phenotype of the compound heterozygote is similar to that of the c11DSD homozygote. These results suggest that a gene(s) necessary for normal development of the extraembryonic ectoderm is present in the c11DSD but deficient in the c6H deletion chromosome.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号