首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress-induced calcium signaling in Arabidopsis   总被引:17,自引:0,他引:17       下载免费PDF全文
Rentel MC  Knight MR 《Plant physiology》2004,135(3):1471-1479
Many environmental stresses result in increased generation of active oxygen species in plant cells. This leads to the induction of protective mechanisms, including changes in gene expression, which lead to antioxidant activity, the recovery of redox balance, and recovery from damage/toxicity. Relatively little is known about the signaling events that link perception of increased active oxygen species levels to gene expression in plants. We have investigated the role of calcium signaling in H2O2-induced expression of the GLUTATHIONE-S-TRANSFERASE1 (GST1) gene. Challenge with H2O2 triggered a biphasic Ca2+ elevation in Arabidopsis seedlings. The early Ca2+ peak localized to the cotyledons, whereas the late Ca2+ rise was restricted to the root. The two phases of the Ca2+ response were independent of each other, as shown by severing shoot from root tissues before H2O2 challenge. Modulation of the height of Ca2+ rises had a corresponding effect upon H2O2-induced GST1 expression. Application of the calcium channel blocker lanthanum reduced the height of the first Ca2+ peak and concomitantly inhibited GST1 expression. Conversely, enhancing the height of the H2O2-triggered Ca2+ signature by treatment with L-buthionine-[S,R]-sulfoximine (an inhibitor of glutathione synthesis) lead to enhancement of GST1 induction. This finding also indicates that changes in the cellular redox balance constitute an early event in H2O2 signal transduction as reduction of the cellular redox buffer and thus the cell's ability to maintain a high GSH/GSSG ratio potentiated the plant's antioxidant response.  相似文献   

2.

Background

Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm.

Results

A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2.

Conclusions

The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.  相似文献   

3.
Cold shock elicits an immediate rise in cytosolic free calcium concentration ([Ca2+]cyt) in both chilling-resistant Arabidopsis and chilling-sensitive tobacco (Nicotiana plumbaginifolia). In Arabidopsis, lanthanum or EGTA caused a partial inhibition of both cold shock [Ca2+]cyt elevation and cold-dependent kin1 gene expression. This suggested that calcium influx plays a major role in the cold shock [Ca2+]cyt response and that an intracellular calcium source also might be involved. To investigate whether the vacuole (the major intracellular calcium store in plants) is involved, we targeted the calcium-dependent photoprotein aequorin to the cytosolic face of the vacuolar membrane. Cold shock calcium kinetics in this microdomain were consistent with a cold-induced vacuolar release of calcium. Treatment with neomycin or lithium, which interferes with phosphoinositide cycling, resulted in cold shock [Ca2+]cyt kinetics consistent with the involvement of inositol trisphosphate and inositide phosphate signaling in this response. We also investigated the effects of repeated and prolonged low temperature on cold shock [Ca2+]cyt. Differences were observed between the responses of Arabidopsis and N. plum-baginifolia to repeated cold stimulation. Acclimation of Arabidopsis by pretreatment with cold or hydrogen peroxide caused a modified calcium signature to subsequent cold shock. This suggests that acclimation involves modification of plant calcium signaling to provide a "cold memory."  相似文献   

4.
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.  相似文献   

5.
6.
7.
Wnt and calcium signaling: beta-catenin-independent pathways   总被引:13,自引:0,他引:13  
Kohn AD  Moon RT 《Cell calcium》2005,38(3-4):439-446
Wnt signaling is a complex pathway in which beta-catenin is typically viewed as a central mediator. However, within the past 15 years, at least three Wnt-mediated pathways have been proposed that function independent of beta-catenin. One pathway involves activation of calcium/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC). Another includes recruitment of heterotrimeric GTP-binding proteins to activate phospholipase C (PLC) and phosphodiesterase (PDE). Lastly, a pathway similar to the planar cell polarity (PCP) pathway in Drosophila has been identified that activates the Jun-N-terminal kinase (JNK) and, perhaps, small GTP-binding proteins. Calcium has been implicated as an important second messenger in all of these pathways. This review will focus on the role of calcium in Wnt signaling and, as a consequence, provide a limited overview of beta-catenin-independent Wnt signaling.  相似文献   

8.
A variety of stimuli, such as abscisic acid (ABA), reactive oxygen species (ROS), and elicitors of plant defense reactions, have been shown to induce stomatal closure. Our study addresses commonalities in the signaling pathways that these stimuli trigger. A recent report showed that both ABA and ROS stimulate an NADPH-dependent, hyperpolarization-activated Ca(2+) influx current in Arabidopsis guard cells termed "I(Ca)" (Z.M. Pei, Y. Murata, G. Benning, S. Thomine, B. Klüsener, G.J. Allen, E. Grill, J.I. Schroeder, Nature [2002] 406: 731-734). We found that yeast (Saccharomyces cerevisiae) elicitor and chitosan, both elicitors of plant defense responses, also activate this current and activation requires cytosolic NAD(P)H. These elicitors also induced elevations in the concentration of free cytosolic calcium ([Ca(2+)](cyt)) and stomatal closure in guard cells. ABA and ROS elicited [Ca(2+)](cyt) oscillations in guard cells only when extracellular Ca(2+) was present. In a 5 mM KCl extracellular buffer, 45% of guard cells exhibited spontaneous [Ca(2+)](cyt) oscillations that differed in their kinetic properties from ABA-induced Ca(2+) increases. These spontaneous [Ca(2+)](cyt) oscillations also required the availability of extracellular Ca(2+) and depended on the extracellular potassium concentration. Interestingly, when ABA was applied to spontaneously oscillating cells, ABA caused cessation of [Ca(2+)](cyt) elevations in 62 of 101 cells, revealing a new mode of ABA signaling. These data show that fungal elicitors activate a shared branch with ABA in the stress signal transduction pathway in guard cells that activates plasma membrane I(Ca) channels and support a requirement for extracellular Ca(2+) for elicitor and ABA signaling, as well as for cellular [Ca(2+)](cyt) oscillation maintenance.  相似文献   

9.
10.
Mitochondria and calcium signaling   总被引:11,自引:0,他引:11  
Nicholls DG 《Cell calcium》2005,38(3-4):311-317
The kinetic properties for the uptake, storage and release of Ca2+ from isolated mitochondria accurately predict the behaviour of the organelles within the intact cell. While the steady-state cycling of Ca2+ across the inner membrane between independent uptake and efflux pathways seems at first sight to be symmetrical, the distinctive kinetics of the uniporter, which is highly dependent on external free Ca2+ concentration and the efflux pathway, whose activity is clamped over a wide range of total matrix Ca2+ by the solubility of the calcium phosphate complex provide a mechanism whereby mitochondria reversibly sequester transient elevations in cytoplasmic Ca2+. Under non-stimulated conditions, the same transport processes can regulate matrix Ca2+ concentrations and hence citric acid cycle activity.  相似文献   

11.
G-protein-coupled signaling in Arabidopsis   总被引:8,自引:0,他引:8  
With an essentially complete plant genome in hand, it is now possible to conclude that a single or possibly just two canonical heterotrimeric G-protein complexes are present in Arabidopsis. In stark contrast, more than one hundred such complexes are found in some metazoans. Nonetheless, it appears that heterotrimeric G-protein complexes couple or affect many different signaling pathways in plants. In addition, there are very few, if any, candidate G-protein-coupled receptors through which this single complex can couple to downstream effectors. Furthermore, some of the classical downstream effectors that are activated by heterotrimeric G proteins in metazoans are also lacking in plants. Thus, we are left with the urgent challenge to determine the novel mechanism of G-protein signaling in plant cells. Recent advances using reverse and molecular genetic approaches have re-opened this topic for plant biologists and the resulting tools will accelerate our progress.  相似文献   

12.
13.
ProspectLacking an efficient method to isolate mutants in Ca2+ signal generation process may limit Ca2+ signaling research in rice. Typical forward genetic screening is always useful to find genes involved in Ca2+ signaling. Looking back at existing research in rice, rice calcium signal research has only just begun. Following the Arabidopsis mature research methods and techniques, especially the mutant screening system, we expect to find several important Ca2+ related calcium sensors which have important agronomic traits in the near future. We are looking forward to great advances in rice calcium signaling research.  相似文献   

14.
The Ca2+-sensing receptor(the Ca SR),a G-protein-coupled receptor,regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+([Ca2+]o) and responding to a diverse array of stimuli.Mutations in the Ca2+-sensing receptor result in hypercalcemic or hypocalcemic disorders,such as familial hypocalciuric hypercalcemia,neonatal severe primary hyperparathyroidism,and autosomal dominant hypocalcemic hypercalciuria.Compelling evidence suggests that the Ca SR plays multiple roles extending well beyond not only regulating the level of extracellular Ca2+ in the human body,but also controlling a diverse range of biological processes.In this review,we focus on the structural biology of the Ca SR,the ligand interaction sites as well as their relevance to the disease associated mutations.This systematic summary will provide a comprehensive exploration of how the Ca SR integrates extracellular Ca2+ into intracellular Ca2+ signaling.  相似文献   

15.
The phytohormone abscisic acid (ABA) triggers an oscillation in the cytosolic Ca(2+) concentration, which is then perceived by unknown Ca(2+) binding proteins to initiate a series of signaling cascades that control many physiological processes, including adaptation to environmental stress. We report here that a Ca(2+) binding protein, SCaBP5, and its interacting protein kinase, PKS3, function as global regulators of ABA responses. Arabidopsis mutants with silenced SCaBP5 or PKS3 are hypersensitive to ABA in seed germination, seedling growth, stomatal closing, and gene expression. PKS3 physically interacts with the 2C-type protein phosphatase ABI2 (ABA-insensitive 2) and to a lesser extent with the homologous ABI1 (ABA-insensitive 1) protein. Thus, SCaBP5 and PKS3 are part of a calcium-responsive negative regulatory loop controlling ABA sensitivity.  相似文献   

16.
The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions.  相似文献   

17.
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens. Received: 29 January 1998 / Accepted: 17 March 1998  相似文献   

18.
The engagement of integrin alpha7 in E63 skeletal muscle cells by laminin or anti-alpha7 antibodies triggered transient elevations in the intracellular free Ca(2+) concentration that resulted from both inositol triphosphate-evoked Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through voltage-gated, L-type Ca(2+) channels. The extracellular domain of integrin alpha7 was found to associate with both ectocalreticulin and dihydropyridine receptor on the cell surface. Calreticulin appears to also associate with cytoplasmic domain of integrin alpha7 in a manner highly dependent on the cytosolic Ca(2+) concentration. It appeared that intracellular Ca(2+) release was a prerequisite for Ca(2+) influx and that calreticulin associated with the integrin cytoplasmic domain mediated the coupling of between the Ca(2+) release and Ca(2+) influx. These findings suggest that calreticulin serves as a cytosolic activator of integrin and a signal transducer between integrins and Ca(2+) channels on the cell surface.  相似文献   

19.
20.
Glutamate-gated calcium fluxes in Arabidopsis   总被引:18,自引:0,他引:18  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号