首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonic acid (AA) is a substrate for a variety of proinflammatory mediators, which are generated by cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P-450 (CYP450) enzymes. COX (e.g., PGs and prostacyclins) and LOX (e.g., leukotrienes) products have well-established proinflammatory roles; however, little is known about the functions of CYP450 products in leukocytes. We previously found that mechanical strain generated by subjecting lymphocytes to hypotonic challenge triggered AA production and that two CYP450 products of AA, 5,6-epoxyeicosatrienoic acid (5,6-EET) and 20-hydroxyeicosatetraenoic acid (20-HETE), as well as a product of LOX, 5-(S)-hydroperoxyeicosatetrenoic acid (5-HPETE), induced Ca2+ entry into primary B cells. The main goal of the present studies, therefore, was to define the biophysically properties of eicosanoid-activated channels responsible for Ca2+ entry and the physiological consequences of activating these channels, including their role in mechanical signaling. We found that 5,6-EET, 20-HETE, and 5-HPETE each activated distinct Ca2+-permeant nonselective cation channels (NSCCs) in primary B cells. These NSCCs each regulate plasma membrane potential and B-cell adhesion to integrin ligands ICAM-1 and VCAM-1. Thus our data demonstrate that proinflammatory mediators produced in response to osmotic and/or physical stress play a direct role in regulating the B-cell membrane potential and their adhesion to specific ECM proteins. These results not only have important implications for understanding normal mechanisms of B-cell activation, differentiation, and trafficking but also point to novel targets for modulating the pathogenesis of B-cell-mediated inflammatory diseases. calcium; arachidonic acid; membrane potential; hypotonicity; cytochrome P-450  相似文献   

2.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

3.
Intracellular Ca(2+) plays a central role in controlling lymphocyte function. Nonetheless, critical gaps remain in our understanding of the mechanisms that regulate its concentration. Although Ca(2+)-release-activated calcium (CRAC) channels are the primary Ca(2+) entry pathways in T cells, additional pathways appear to be operative in B cells. Our efforts to delineate these pathways in primary murine B cells reveal that Ca(2+)-permeant nonselective cation channels (NSCCs) operate in a cooperative fashion with CRAC. Interestingly, these non-CRAC channels are selectively activated by mechanical stress, although the mechanism overlaps with BCR-activated pathways, suggesting that they may operate in concert to produce functionally diverse Ca(2+) signals. NSCCs also regulate the membrane potential, which activates integrin-dependent binding of B cells to extracellular matrix elements involved in their trafficking and localization within secondary lymphoid organs. Thus, CRAC and distinct Ca(2+) permeant NSCCs are differentially activated by the BCR and mechanical stimuli and regulate distinct aspects of B cell physiology.  相似文献   

4.
In the present study, we investigated the implication of transient receptor potential vanilloid (TRPV)-related channels in the 5-hydroxytryptamine (5-HT)-induced both intracellular calcium response and mitogenic effect in rat pulmonary arterial smooth muscle cells (PASMC). Using microspectrofluorimetry (indo-1 as Ca(2+) fluorescent probe) and the patch-clamp technique (in whole-cell configuration), we found that 5-HT (10 microM) induced a transient intracellular calcium mobilization followed by a sustained calcium entry. This latter was partly blocked by an inhibitor of cytochrome P450 epoxygenase (17-ODYA) and insensitive to cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and CDC), suggesting the involvement of arachidonic acid metabolization by cytochrome P450 epoxygenase. This calcium influx was also sensitive to Ni(2+) and to ruthenium red, a TRPV channel blocker, and mimicked by 4alpha-phorbol-12,13-didecanoate (4alpha-PDD), a TRPV4 channel agonist. In patched PASMC, 5-HT and 4alpha-PDD-activated TRPV4-like ruthenium red sensitive currents with typical characteristics. Furthermore, 5-HT induced a ruthenium red sensitive increase in BrdU incorporation levels in PASMC. The present study provides evidence that 5-HT activates a TRPV4-like current, potentially involved in PASMC proliferation. The signalling pathway between proliferation and ion channel activation remains to be determined and may represent a molecular target for the treatment of vascular diseases such as pulmonary hypertension.  相似文献   

5.
This article reviews the types and roles of voltage-independent Ca(2+) channels involved in the endothelin-1 (ET-1)-induced functional responses such as vascular contraction, cell proliferation, and intracellular Ca(2+)-dependent signaling pathways and discusses the molecular mechanisms for the activation of voltage-independent Ca(2+) channels by ET-1. ET-1 activates some types of voltage-independent Ca(2+) channels, such as Ca(2+)-permeable nonselective cation channels (NSCCs) and store-operated Ca(2+) channels (SOCC). Extracellular Ca(2+) influx through these voltage-independent Ca(2+) channels plays essential roles in ET-1-induced vascular contraction, cell proliferation, activation of epidermal growth factor receptor tyrosine kinase, regulation of proline-rich tyrosine kinase, and release of arachidonic acid. The experiments using various constructs of endothelin receptors reveal the importance of G(q) and G(12) families in activation of these Ca(2+) channels by ET-1. These findings provide a potential therapeutic mechanism of a functional interrelationship between G(q)/G(12) proteins and voltage-independent Ca(2+) channels in the pathophysiology of ET-1, such as in chronic heart failure, hypertension, and cerebral vasospasm.  相似文献   

6.
The effects of arachidonic acid and thrombin on calcium movements have been studied in fura-2-loaded platelets by a procedure which allows simultaneous monitoring of the uptake of manganese, a calcium surrogate for Ca2+ channels, and the release of Ca2+ from intracellular stores. Arachidonic acid induced both Ca2+ (Mn2+) entry through the plasma membrane and Ca2+ release from the intracellular stores. The release of Ca2+ was prevented by cyclo-oxygenase inhibitors and mimicked by the prostaglandin H2/thromboxane A2 receptor agonist U46619. Ca2+ (Mn2+) entry required higher concentrations of arachidonic acid and was not prevented by either cyclo-oxygenase or lipoxygenase inhibitors. Several polyunsaturated fatty acids reproduced the effect of arachidonic acid on Ca2+ (Mn2+) entry, but higher concentrations were required. The effects of maximal concentrations of arachidonic acid and thrombin on the uptake of Mn2+ were not additive. Both agonists induced the entry of Ca2+, Mn2+, Co2+ and Ba2+, but not Ni2+, which, in addition, blocked the entry of the other divalent cations. However, arachidonic acid, but not thrombin, increased a Ni2(+)-sensitive permeability to Mg2+. The effect of thrombin but not that of arachidonic acid was prevented either by pretreatment with phorbol ester or by an increase in cyclic-AMP levels. Arachidonic acid also accelerated the uptake of Mn2+ by human neutrophils, rat thymocytes and Ehrlich ascites-tumour cells.  相似文献   

7.
The arachidonate-regulated, Ca(2+)-selective ARC channels represent a novel receptor-activated pathway for the entry of Ca(2+) in nonexcitable cells that is entirely separate from the widely studied store-operated, Ca(2+) release-activated Ca(2+) channels. Activation of ARC channels occurs specifically at the low agonist concentrations typically associated with oscillatory Ca(2+) signals and appears to provide the predominant mode of Ca(2+) entry under these conditions (Mignen, O., Thompson, J. L., and Shuttleworth, T. J. (2001) J. Biol. Chem. 276, 35676-35683). In this study we demonstrate that ARC channels are present in a variety of different cell types including both cell lines and primary cells. Examination of their pharmacology revealed that currents through these channels are significantly inhibited by low concentrations (< 5 microm) of Gd(3+), are unaffected by 100 microm 2-aminoethyoxydiphenyl borane, and are not activated by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (100 microm). Their selectivity for Ca(2+) was assessed by determining the EC(50) for external Ca(2+) block of the monovalent currents observed in the absence of external divalent cations. The value obtained (150 nm) indicates that the Ca(2+) selectivity of ARC channels is extremely high. Examination of the ability of various fatty acids, including arachidonic acid, to activate the ARC channels demonstrated that activation does not reflect any nonspecific membrane fluidity or detergent effects, shows a high degree of specificity for arachidonic acid over other fatty acids (especially monounsaturated and saturated fatty acids), and is independent of any arachidonic acid metabolite. Moreover, studies using the charged analogue arachidonyl coenzyme A demonstrate that activation of the ARC channels reflects an action of the fatty acid specifically at the internal face of the plasma membrane. Whether this involves a direct action of arachidonic acid on the channel protein itself or an action on some intermediary molecule is, at present, unclear.  相似文献   

8.
Capacitative calcium entry in the nervous system   总被引:6,自引:0,他引:6  
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system.  相似文献   

9.
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.  相似文献   

10.
Calcium is a critical structural and regulatory nutrient in plants. However, mechanisms of its uptake by root cells are poorly understood. We have found that Ca2+ influx in Arabidopsis root epidermal protoplasts is mediated by voltage-independent rapidly activating Ca2+-permeable non-selective cation channels (NSCCs). NSCCs showed the following permeability (P) sequence: PCa (1.00) = PBa (0.93) > PZn (0.51), PCa/PNa = 0.19, PCa/PK = 0.14. They were inhibited by quinine, Gd3+, La3+ and the His modifier diethylpyrocarbonate, but not by the Ca2+ or K+ channel antagonists, verapamil and tetraethylammonium (TEA+). Single channel conductance measured in 20 mm external Ca2+ was 5.9 pS. Calcium-permeable NSCCs co-existed with hyperpolarisation-activated Ca2+ channels (HACCs), which activated 40-60 min after forming the whole-cell configuration. HACCs activated at voltages <-130 to -150 mV, showed slow activation kinetics and were regulated by cytosolic Ca2+ ([Ca2+]cyt). Using aequorin-expressing plants, a linear relationship between membrane potential (Vm) and resting [Ca2+]cyt was observed, indicating the involvement of NSCCs. Intact root 45Ca2+ influx was reduced by Gd3+ (NSCC blocker) but was verapamil and TEA+ insensitive. In the root elongation zone, both root net Ca2+ influx (measured by Ca2+-selective vibrating microelectrode) and NSCC activity were increased compared to the mature epidermis, suggesting the involvement of NSCC in growth. A Ca2+ acquisition system based on NSCC and HACC co-existence is proposed. In mature epidermal cells, NSCC-mediated Ca2+ influx dominates whereas in specialised root cells (root hairs and elongation zone cells) where elevated [Ca2+]cyt activates HACCs, HACC-mediated Ca2+ influx predominates.  相似文献   

11.
Along with the inositol trisphosphate-induced release of stored Ca(2+), a receptor-enhanced entry of Ca(2+) is a critical component of intracellular Ca(2+) signals generated by agonists acting at receptors coupled to the activation of phospholipase C. Although the simple emptying of the intracellular Ca(2+) stores is known to be capable of activating Ca(2+) entry via the so-called "capacitative" mechanism, recent evidence suggests that Ca(2+) entry at physiological agonist concentrations, where oscillatory Ca(2+) signals are typically observed, does not conform to such a model. Instead, a noncapacitative Ca(2+) entry pathway regulated by arachidonic acid appears to be responsible for Ca(2+) entry under these conditions. Using whole-cell patch clamp techniques we demonstrate that low concentrations of arachidonic acid activate a Ca(2+)-selective current that is superficially similar to the store-operated current I(CRAC), but which also demonstrates certain distinct features. We have named this novel current I(ARC) (for arachidonate-regulated calcium current). Importantly, I(ARC) can be readily activated in cells whose Ca(2+) stores have been maximally depleted. I(ARC) represents a novel Ca(2+) entry pathway that is entirely separate from those activated by store depletion and is specifically activated at physiological levels of stimulation.  相似文献   

12.
13.
We have studied the effects of the antithrombitic agent PCA 4230 on the entry of Mn2+, used here as a Ca2+ surrogate for Ca2+ channels, and on the release of Ca2+ from the intracellular stores in stimulated human platelets loaded with fura-2. PCA 4230 prevented receptor-operated calcium entry activated by thrombin, ADP and collagen with no modification of the Ca2+ release from the intracellular stores. PCA 4230 also inhibited cytochrome P-450-mediated O-dealkylase activity with the same concentration-dependence as the thrombin-induced Mn2+ entry. These results suggest that the inhibitory effects of PCA 4230 on Ca2+ influx may be due to its interaction with cytochrome P-450, which has been proposed recently to be involved in the activation of receptor-operated Ca2+ channels. In addition, PCA 4230 inhibited both PAF-induced Ca2+ entry and Ca2+ release, behaving as a PAF-antagonist. All these effects contribute to explain the antithrombitic action of PCA 4230.  相似文献   

14.
Notwithstanding extensive efforts, the mechanism of capacitative calcium entry (CCE) remains unclear. Two seemingly opposed theories have been proposed: secretion-like coupling (Patterson, R. L., van Rossum, D. B., and Gill, D. L. (1999) Cell 98, 487-499) and the calcium influx factor (CIF) (Randriamampita, C., and Tsien, R. Y. (1993) Nature 364, 809-814). In the current study, a combinatorial approach was taken to investigate the mechanism of CCE in corneal endothelial cells. Induction of cytochrome P-450s by beta-naphthoflavone (BN) enhanced CCE measured by Sr(2+) entry after store depletion. 5,6-Epoxyeicosatrienoic acid (5,6-EET), a proposed CIF generated by cytochrome P-450s (Rzigalinski, B. A., Willoughby, K. A., Hoffman, S. W., Falck, J. R., and Ellis, E. F. (1999) J. Biol. Chem. 274, 175-182), induced Ca(2+) entry. Both BN-enhanced CCE and the 5,6-EET-induced Ca(2+) entry were inhibited by the CCE blocker 2-aminoethoxydiphenyl borate, indicating a role for cytochrome P-450s in CCE. Treatment with calyculin A (CalyA), which causes condensation of cortical cytoskeleton, inhibited CCE. The actin polymerization inhibitor cytochalasin D partially reversed the inhibition of CCE by CalyA, suggesting a secretion-like coupling mechanism for CCE. However, CalyA could not inhibit CCE in BN-treated cells, and 5,6-EET caused a partial activation of CCE in CalyA-treated cells. These results further support the notion that cytochrome P-450 metabolites may be CIFs. The vesicular transport inhibitor brefeldin A inhibited CCE in both vehicle- and BN-treated cells. Surprisingly, Sr(2+) entry in the absence of store depletion was enhanced in BN-treated cells, which was also inhibited by 2-aminoethoxydiphenyl borate. An integrative model suggests that both CIF from cytochrome P-450 metabolism and secretion-like coupling mechanisms play roles in CCE in corneal endothelial cells.  相似文献   

15.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

16.
To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.  相似文献   

17.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses, including neurotransmitter release, muscle contraction, and cell growth and proliferation. A major route for Ca(2+) influx is through store-operated Ca(2+) channels. One important intracellular target for Ca(2+) entry through store-operated channels is the mitochondrion, which increases aerobic metabolism and ATP production after Ca(2+) uptake. Here, we reveal a novel feedback pathway whereby pyruvic acid, a critical rate-limiting substrate for mitochondrial respiration, increases store-operated entry by reducing inactivation of the channels. Importantly, the effects of pyruvic acid are manifest at physiologically relevant concentrations and membrane potentials. The reduction in the inactivation of calcium release-activated calcium (CRAC) channels by pyruvate is highly specific in that it is not mimicked by other intermediary metabolic acids, does not require its metabolism, is independent of its Ca(2+) buffering action, and does not involve mitochondrial Ca(2+) uptake or ATP production. These results reveal a new and direct link between intermediary metabolism and ion-channel gating and identify pyruvate as a potential signaling messenger linking energy demand to calcium-channel function.  相似文献   

18.
Growth factor-induced intracellular calcium signals in endothelial cells regulate cytosolic and nuclear events involved in the angiogenic process. Among the intracellular messengers released after proangiogenic stimulation, arachidonic acid (AA) plays a key role and its effects are strictly related to calcium homeostasis and cell proliferation. Here, we studied AA-induced intracellular calcium signals in endothelial cells derived from human breast carcinomas (B-TEC). AA promotes B-TEC proliferation and organization of vessel-like structures in vitro. The effect is directly mediated by the fatty acid without a significant contribution of its metabolites. AA induces Ca(2+)(i) signals in the entire capillary-like structure during the early phases of tubulogenesis in vitro. No such responses are detectable in B-TECs organized in more structured tubules. In B-TECs growing in monolayer, AA induces two different signals: a Ca(2+)(i) increase due to Ca(2+) entry and an inhibition of store-dependent Ca(2+) entry induced by thapsigargin or ATP. An inhibitor of Ca(2+) entry and angiogenesis, carboxyamidotriazole, significantly and specifically decreases AA-induced B-TEC tubulogenesis, as well as AA-induced Ca(2+) signals in B-TECs. We conclude that (a) AA-activated Ca(2+) entry is associated with the progression through the early phases of angiogenesis, mainly involving proliferation and tubulogenesis, and it is down-regulated during the reorganization of tumor-derived endothelial cells in capillary-like structures; and (b) inhibition of AA-induced Ca(2+) entry may contribute to the antiangiogenic action of carboxyamidotriazole.  相似文献   

19.
We have studied the effects of cytochrome P450 inhibitors on the entry of Ca2+ and Mn2+, used here as a Ca2+ surrogate for Ca2+ channels, in fura-2-loaded GH3 pituitary cells and bovine chromaffin cells depolarized with high-K+ solutions. Imidazole antimycotics were potent inhibitors (econazole greater than miconazole greater than clotrimazole greater than ketoconazole). alpha-Naphtoflavone and isosafrole, but not metyrapone, also inhibited the entry of Ca2+ and Mn2+ induced by depolarization. This inhibitory profile most resembles that reported for IA-type cytochrome P450. However, carbon monoxide (CO), a well-known cytochrome P450 antagonist, had no effect on Ca2+ (Mn2+) entry. Given the high selectivity of the imidazole antimycotics for the heme moiety, our results suggest that a hemoprotein closely related to cytochrome P450 (but insensitive to CO) might be involved in the regulation of voltage-gated Ca2+ channels. The inhibitory pattern was also similar to that previously reported for agonist-induced Ca2+ (Mn2+) influx in neutrophils and platelets, although CO was an efficient inhibitor in this case. These results pose the question of whether similarities in the sensitivity to cytochrome P450 inhibitors exhibited by receptor-operated and voltage-gated channels reflect unknown similarities either in structural features or regulation mechanisms.  相似文献   

20.
In this study, we report the molecular cloning of cDNAs encoding three distinct isoforms of rat (r) TRP6 Ca(2+) channels. The longest isoform, rTRP6A, contains 930 amino acid residues; rTRP6B lacks 54 amino acids (3-56) at the N terminus, and rTRP6C is missing an additional 68 amino acids near the C terminus. Transient transfection of COS cells with expression vectors encoding rTRP6A or rTRP6B increased Ca(2+) influx and gave rise to a novel Ba(2+) influx after activation of M(5) muscarinic acetylcholine receptors. By contrast, passive depletion of intracellular Ca(2+) stores with thapsigargin did not induce Ba(2+) influx in cells expressing rTRP6 isoforms. Ba(2+) influx was also stimulated in rTRP6A-expressing cells after exposure to the diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), but rTRP6B-expressing cells failed to show OAG-induced Ba(2+) influx. Expression of a rTRP6 N-terminal fragment of rTRP6B or rTRP6A antisense RNA blocked M(5) muscarinic acetylcholine receptor-dependent Ba(2+) influx in COS cells that were transfected with rTRP6 cDNAs. Together these results suggest that rTRP6 participates in the formation of Ca(2+) channels that are regulated by a G-protein-coupled receptor, but not by intracellular Ca(2+) stores. In contrast to the results we obtained with rTRP6A and rTRP6B, cells expressing rTRP6C showed no increased Ca(2+) or Ba(2+) influxes after stimulation with carbachol and also did not show OAG-induced Ba(2+) influx. Glycosylation analysis indicated that rTRP6A and rTRP6B are glycosylated in COS cells, but that rTRP6C is mostly not glycosylated. Together these results suggest that the N terminus (3-56 amino acids) is crucial for the activation of rTRP6A by diacylglycerol and that the 735-802 amino acid segment located just downstream from the 6th transmembrane segment may be required for processing of the rTRP6 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号