首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vitro method of growing bacteria as a defined nutrient-depleted biofilm is proposed. The medium was defined nutritionally in terms of the quantitative composition and by the total amount of nutrient required to achieve a defined population size. Escherichia coli and Burkholderia cepacia were incubated on a filter support placed on a defined volume of solid medium. The change of biomass of the biofilm population was compared with the change in a planktonic culture. The size of the population in stationary phase was proportional to the concentration of limiting substrate up to 40 μmol cm−2 glucose for E. coli and up to 2·7 × 10−9 mol cm−2 iron for B. cepacia . Escherichia coli growing exponentially had a growth rate of μ = 0·30 h−1 in a biofilm and μ = 0·96 h−1 in planktonic culture. The growth rate, μ, for exponentially growing B. cepacia in a biofilm was 1·12 h−1 and in planktonic culture 0·78 h−1. This method allows the limitation of the size of a biofilm population to a chosen value.  相似文献   

2.
Nitrogen regulation in tylosin production by Streptomyces fradiae NRRL 2702 was studied in chemostat culture using a soluble synthetic medium. The maximum value of specific tylosin formation rate ( q TYL) was 1·13 mg g−1 h−1 at the specific growth rate (μ) of 0·05 h−1, and q TYL decreased with increasing levels of the specific growth rate after reaching a rate of 0·1 h−1. The optimum conditions for tylosin formation were that the specific ammonium ion uptake rate ( q N) and μ were 0·13 mmol g−1 h−1 and 0·05 h−1, respectively. The specific formation rates of threonine dehydratase (TDT) and tylosin were repressed by high levels of specific ammonium ion uptake rate. This study showed the adaptation to chemostat cultures of the nitrogen regulation of tylosin fermentations.  相似文献   

3.
4.
Oxygen consumption of Oreochromis niloticus at different stages of development was studied in relation to salinity, temperature and time of day, using a Warburg apparatus. The oxygen consumption of newly hatched (0–14 h) larvae was 3.40 μl O2 larva−1 h−1, of older yolk sac larvae 10.09 μl O2 larva−1 h−1, and of one-month-old fry 32.99 μl O2 larva−1 h−1. The QO2 values showed a decrease with development and growth, ranging from 21.2–26.0 μl O2 mg−1 h−1 in newly hatched larvae to 2.97 μl mg−1 h−1 in one-month-old fry. Changes in oxygen consumption occurred with salinity, the highest being at 17%o. Active larvae (12-24 mm T.L.) showed a doubling of consumption with a 10° C rise in temperature, and their Q10 factor increased from 2.25 to 3.43 with increasing size. Day-old yolk-sac larvae, late yolk-sac larvae (5 days old) and fry of 12 14 mm length all showed a depression in oxygen consumption at midnight followed by a dawn rise.  相似文献   

5.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

6.
Even in the presence of glucose the growth of Marchantia polymorpha L. (cell line HYH-2F) requires light, and growth is more sensitive to 10−6 M 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea than to 10−4 Antimycin A. The inability of the cells to grow in the dark is due to the low level of respiration. The respiration rate under light increased to four times the dark value. The values of the compensation ratio (the photosyntehtic rate/the respiration rate) for the oxygen exchange were below 1.0 daring the growth period, although oxygen evolution was found. At the early exponential phase, oxygen evolution was 0.373 μmol (mg cell dry weight)−1 h−1 [61.7 μmol (mg chlorophyll)−1 h−1]. M. polymorpha cells are unable to grow anaerobically in the light without a supply of carbon dioxide. When 1% carbon dioxide in nitrogen is supplied, photochemically produced oxygen and energy are sufficient for sustained growth although at significantly reduced yields in both cell dry weight and chlorophyll. Photosyntehtic CO2 assimilation rate was 0.13 μmol (mg cell dry weight)−1 h−1[11.3 μmol (mg chlorophyll)−1 h−1]. At least one-third of the carbon atoms in cellular constituents seem to be derived from atmospheric carbon dioxide, which indicates that M. polymorpha cells grow photomixotrophicaily.  相似文献   

7.
The production of acid phosphatases (E.C.3.1.3.2, ACPs) by Aspergillus niger N402A is regulated by specific growth rate, as well as phosphate availability and pH, as demonstrated by studies in continuous flow culture. Specific ACP activity was highest when A. niger was grown at pH 6.3 (64±8 U g−1) or pH 2.8 (99±11 U g−1), at a dilution rate of 0.07 h−1 and phosphate concentrations below 0.46 mM. ACP production was growth correlated for specific growth rates between 0.07 and 0.13 h−1. Four different ACPs, including two phytases, were produced by A. niger N402A. The ACP and the phytase with maximal activities at pH 5.5 were differentially expressed at different culture pH values, with greater production at low pH.  相似文献   

8.
Abstract To improve the transformability of stable protoplast type L-forms of Proteus mirabilis for recombinant plasmid DNA, conditions for efficient electrotransformation were explored. Exposing cells from the exponential phase of growth at a density of 6−8 × 109/ml in electrotransformation buffer having a conductivity of 1.4 mS/cm to a field strength of 6.5 kV/cm for a mean pulse duration time of 1.2 ms reproducibly yielded transformation efficiencies in the order of 5 × 104 transformants per μg of DNA. Compared to the polyethylene glycol method for transformation, electrotransformation appeared to be the method of choice for introduction of plasmid DNA into L-form cells.  相似文献   

9.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

10.
Abstract: The turnover rates of phenylethylamine and tryptamine have been estimated as their rates of accumulation after inhibition of monoamine oxidase by pargyline and were found to be 1.53 nmol/g/h and 0.24 nmol/g/h, respectively. Rate constants for the substrate activities of these amines towards monoamine oxidase were calculated as 100 h−1 and 150 h−1, respectively. Tryptamine was found to exhibit a biphasic response to increasing pargyline dosage, demonstrating its dual activity to type B and type A monoamine oxidase, for which two rate constants were obtained, kB=100 h−1 and kA=50 h−1.  相似文献   

11.
Growth of Nitrosomonas europaea on hydroxylamine   总被引:2,自引:0,他引:2  
Abstract Hydroxylamine is an intermediate in the oxidation of ammonia to nitrite, but until now it has not been possible to grow Nitrosomonas europaea on hydroxylamine. This study demonstrates that cells of N. europaea are capable of growing mixotrophically on ammonia and hydroxylamine. The molar growth yield on hydroxylamine (4.74 g mol−1 at a growth rate of 0.03 h−1) was higher than expected. Aerobically growing cells of N. europaea oxidized ammonia to nitrite with little loss of inorganic nitrogen, while significant inorganic nitrogen losses occurred when cells were growing mixotrophically on ammonia and hydroxylamine. In the absence of oxygen, hydroxylamine was oxidized with nitrite as electron acceptor, while nitrous oxide was produced. Anaerobic growth of N. europaea on ammonium, hydroxylamine and nitrite could not be observed at growth rates of 0.03 h−1 and 0.01 h−1.  相似文献   

12.
L-forms of Enterococcus faecium, Bacillus subtilis and Pseudomonas syringae pv. phaseolicola were differentiated from their parent, cell-walled forms by a modified Gram staining technique. The addition of glutaraldehyde to the culture medium fixed the cells to prevent lysis of the L-forms. The cell-walled forms exhibited typical Gram staining reactions whereas the L-forms remained red due to the counterstain. L-forms were easily differentiated from cell-walled forms by their size and morphology which was made more obvious by the staining procedure. This is a very rapid and easy technique which distinguishes L-form bacteria from cell-walled organisms.  相似文献   

13.
We studied the effect of mechanical impedance on cell flux and meristematic activity in pea roots. Pea seedlings ( Pisum sativum L. cv. Helka) were grown in cores of sand packed to dry bulk densities of either; 1.4 Mg m−3 with an additional 2.4 kg uniaxial load applied to the surface to increase the mechanical resistance to growth (penetration resistance of 1.5 MPa); or 1.0 Mg m−3 (penetration resistance of 0.05 MPa). A water content of 0.06 g g−1 was chosen for optimum root growth. After 3 days, the seedlings were transferred to hydroponics, colchicine was added and the rate of cell doubling, mitotic index and length of the cell cycle was assessed. Cell flux in the third cortical layer was calculated for roots immediately removed from sand.Mechanical impedance slowed root extension to about 20% of the unimpeded rate, and final cell length was reduced to 50% of the unimpeded length. The rate of cell doubling was 3.4 times slower for roots recovering from mechanical impedance mostly as a result of a longer period spent in interphase. Cell flux in impeded roots was approximately half that of unimpeded roots (5 cells h−1), and contributed to a shorter cell file and elongation zone, and a slower rate of root elongation.  相似文献   

14.
Abstract: The rates of ingestion of bacteria and of accumulation of bacterial biomass by hungry Pteridomonas danica and Paraphysomonas imperforata were measured using dual radioactive-labelled bacteria in experiments lasting 4–8 h. Pteridomonas continuously consumed 4–5 bacteria h−1 throughout experiments lasting 8 h, irrespective of bacterial concentration above a threshold of about 5 × 105 bacteria ml−1, and continued to catch bacteria even below this density. The clearance rate of about 1 nl cell−1 h−1 at higher bacterial concentrations increased three or four times as bacterial numbers fell. Paraphysomonas cells, with only half the biomass of Pteridomonas , ingested up to 10 bacteria h−1 at high bacterial concentrations, and gradually reduced the feeding rate, effectively ceasing to feed at 106 bacteria ml−1; their initial clearance rate of 1–2.5 nl cell−1 h−1 subsequently fell as low as 0.1 nl cell−1 h−1. Estimation of feeding rate by extrapolation from short-term experiments on such flagellates requires extreme caution. These flagellates, starved to levels typical of the natural environment, accumulated ingested bacterial biomass at an efficiency of between 16 and 21%, indicating that in nature they would recycle 80% or more of the nutrients contained in their food.  相似文献   

15.
The diel rhythms in metabolic rate ( MR ) and activity level ( AL ) were measured for single post-hatching dogfish (weight range, 2.76–10.61 g) at 15° C by the indirect calorimetric method of rate of oxygen consumption ( V O2) and by video-observation respectively, over a period of 72 b. The mean VO 2 increased from 62.0 (s.e. 2.9) mg O2 kg−1 h−1 in the daylight hours to 85.5 (s.e. 3.1) mg O2 kg−1 h−1 during the dark (light regíme, 12 h L: 12 h D). The simultaneous measurement of A L also showed mean night elevation from 0.6 (s.e. 0.2) min h−1 in the light phase to 14.5 (s.e. 1.6) min h−1 during the darkness. Bimodal nocturnal activity (BNA) was exhibited by the post-hatching dogfish within the 12 h dark period, with V O2 increasing from 71.4 (s.e. 2.8) mg O2 kg−1 h−1 before 01.00 hours to 99.5 (s.e. 4.2) mg O2 kg−1 h−1 after 01.00 hours. Similarly, A L also increased from 8.9 (s.e. I.7)min h−1 before 01.00 hours to 21.1 (s.e. 2.8) min h−1 after 01.00 hours. The importance of the results presented to the natural behavioural ecology of the hatching dogfish are discussed.  相似文献   

16.
细菌L型的厌氧诱导和培养   总被引:2,自引:0,他引:2  
厌氧条件下以羧卡青霉素诱导金黄色葡萄球菌、大肠杆菌和蜡样芽胞杆菌形成L型,观察细菌L型在厌氧条件下的形成、形态、生长及时渗透压的敏感性等特性。结果表明:蜡样芽胞杆菌在厌氧条件下不能形成L型或其L型在厌氧条件下亦不能返祖。金黄色葡萄球菌和大肠杆菌在厌氧条件下虽能诱生L型,但形成丝状体的构成L型菌落难以传代培养,厌氧培养未见L型圆球体和典型L型油煎蛋样菌落。金黄色葡萄球菌L型在含1%~10%NaCl的L型培养基上可生长形成L型菌落或非菌落形式存在的L型巨形体;大肠杆菌和蜡样芽胞杆菌的L型在含2%~6%NaCl的L型培养基上可生长形成L型菌落或非菌落形式存在的L型巨形体。涂片染色或返祖试验证实细菌L型在含0.5%NaCl的L型培养基或常规细菌学培养基上亦可生存。非菌落性L型巨形体和丝形体是细菌L型在琼脂培养基上广泛的存在形式。  相似文献   

17.
Filterability of Streptococcal L-Forms   总被引:4,自引:3,他引:1       下载免费PDF全文
The filterability of the broth-grown stable L-form derived from Streptococcus faecium F24 was tested by filtration under the influence of varying amounts of applied pressure. A decrease in the pore size of the filter resulted in a corresponding decrease in viable count, but no major effect was noted due to the different pressures applied. Serial filtration of a deoxyribonuclease-treated L-form culture in the mid-logarithmic phase of growth resulted in recovery of viable L-forms from the 0.45-mum filtrate but not from the 0.22-mum filtrate. It is possible that disruption of the L-form bodies with release of small viable elements had occurred. Protoplasts, diluted in an osmotic stabilizer, were filtered similarly; L-forms could be grown from the filtrate passing through the filters of 0.45 mum or greater. Filtration of the parent streptococci gave rise to streptococcal colonies from the 1.2-mum filtrate only.  相似文献   

18.
Chlorophyllous, cultured cells of Marchantia polymorpha L. (HYA-2 cell line) grow actively under photoautotrophic (lithotrophic) conditions. The maximum specific growth rate (μcell) was 0.64 day−1 and the doubling time was 1.08 days under optimum conditions (165 μmol m−2 s−1, 1% carbon dioxide enriched atmosphere, 25°C). The photosynthetic activity was 1.30 μmol CO2-fixed (106 cells)−1 h−1 [66 μmol (mg chlorophyll)−1 h−1] in the exponential phase. The growth course has two distinct phases, an exponential and a linear one. The exponential phase is observed as long as the population density is sufficiently low (less than 7.9 × 106 cells ml−1), so that practically all individual cells directly receive the full incident light. The effect of light on the specific growth rate is a linear function of photon flux density. Linear growth occurs after the population density is so high that the incident light is almost completely absorbed by the cell suspension. The growth rate is a logarithmic function of photon flux density, in contrast to the specific growth rate, and saturates at high photon flux densities. The conditions of maximum growth, however, are not wellbalanced between cell mass production and cell division. Therefore, the maximum growth does not continue for a long time.  相似文献   

19.
Unfertilised cod eggs showed a mean oxygen uptake rate at 5°C of 0.089 μl O2, dry wt.−1 h−1; this gradually rose to 0.768 μl O2 mg dry wt.−1 h−1 in eggs about to hatch. From hatching to complete yolk absorption larvae respired at 1.6 μl O2, mg dry wt.−1 h−1. During starvation following yolk absorption, uptake fell significantly to 1.1 μl O2, mg dry −1 h−1. Much of this decrease in oxygen consumption was shown to be caused by reduction in activity. Loss of weight during the embryo and larval phases could not easily be reconciled with total oxygen consumption; it is suggested that cod embryos and larvae may not rely solely upon endogenous energy reserves during development.  相似文献   

20.
SUMMARY. The oxygen consumption of shrimps ranging from 1 to 30 mg dry mass was determined at 18, 24 and 30°C using a continuous flow recording respirometer based upon a Clark-type oxygen electrode. Respiration (ascribed to routine metabolism) is described by the power curve: R = a Mb , ( R =μg O2 h−1, M = mg dry mass), which gives values of a = 1.632, 2.564 and 4.181, and b = 0.800, 0.898, and 0.793, at 18, 24 and 30°C respectively. The single expression, R = 0.008 T 1.829 M 0.830 provides a reasonable prediction of respiration as a combined function of shrimp size ( M ) and temperature (T, °C). Using an energy equivalent of 14.14 J mg O2−1 estimates of the energy requirements ( E , J h−1 10−3) of routine metabolism are given by the expression: E = 0.115 T 1.829 M 0.830.
Variability in oxygen consumption values between individuals is discussed and the observations on C. nilotica are compared with other crustacean studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号