首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the climate changes, many long‐term studies have shown that the timing of bird migration is shifting, increasing the need for reliable measures of migratory phenology. Ideally, daily counts of birds at a site are used to calculate the mean arrival date (MAD) but, as this approach is not always possible and is very labour‐intensive, simpler metrics such as first arrival date (FAD) have commonly been used. Here, we examine the relationship between FAD and MAD in 28 summer migrant bird species over a 42‐year period (1970–2011) at Portland Bird Observatory, UK. Although significant correlations between FAD and MAD were detected, relationships were weak, particularly in long‐distance migrants. We suggest that FAD, although a simple and straightforward measure, is not particularly robust as a proxy for overall migratory phenology at a population level.  相似文献   

2.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

3.
Breeding at the right time is essential for animals in seasonal climates in order to ensure that the energy demands of reproduction, particularly the nutritional requirements of growing young, coincide with peak food availability. Global climate change is likely to cause shifts in the timing of peak food availability, and in order to adapt successfully to current and future climate change, animals need to be able to adjust the time at which they initiate breeding. Many animals use environmental cues available before the breeding season to predict the seasonal peak in food availability and adjust their phenology accordingly. We tested the hypothesis that regulation of breeding onset should reflect the scale at which organisms perceive their environment by comparing phenology of three seabird species at a North Sea colony. As predicted, the phenology of two dispersive species, black-legged kittiwake ( Rissa tridactyla ) and common guillemot ( Uria aalge ), correlated with a large-scale environmental cue (the North Atlantic Oscillation), whereas a resident species, European shag ( Phalacrocorax aristotelis ), was more affected by local conditions (sea surface temperature) around the colony. Annual mean breeding success was lower in late years for European shags, but not for the other two species. Since correlations among climate patterns at different scales are likely to change in the future, these findings have important implications for how migratory animals can respond to future climate change.  相似文献   

4.
The ultimate reason why birds should advance their phenology in response to climate change is to match the shifting phenology of underlying levels of the food chain. In a seasonal environment, the timing of food abundance is one of the crucial factors to which birds should adapt their timing of reproduction. They can do this by shifting egg‐laying date (LD), and also by changing other life‐history characters that affect the period between laying of the eggs and hatching of the chicks. In a long‐term study of the migratory Pied Flycatcher, we show that the peak of abundance of nestling food (caterpillars) has advanced during the last two decades, and that the birds advanced their LD. LD strongly correlates with the timing of the caterpillar peak, but in years with an early food peak the birds laid their eggs late relative to this food peak. In such years, the birds advance their hatching date by incubating earlier in the clutch and reducing the interval between laying the last egg to hatching of the first egg, thereby partly compensating for their relative late LD. Paradoxically, they also laid larger clutches in the years with an early food peak, and thereby took more time to lay (i.e. one egg per day). Clutch size therefore declined more strongly with LD in years with an early food peak. This stronger response is adaptive because the fitness of an egg declined more strongly with date in early than in late years. Clearly, avian life‐history traits are correlated and Pied Flycatchers apparently optimize over the whole complex of the traits including LD, clutch size and the onset of incubation. Climate change will lead to changing selection pressures on this complex of traits and presumably the way they are correlated.  相似文献   

5.
Global climate change affects ecosystems via several trophic levels. We investigated changes in the timing of breeding in the willow tit (Poecile montanus) and timing of its caterpillar food resource in relation to warming springs in a boreal forest. We used generalized linear mixed effect models to study the importance of synchrony between the timing of breeding in willow tits and the caterpillar food availability on the breeding success, measured as nestling survival rate and mean nestling weight. Both the timing of breeding and the timing of the caterpillar peak advanced during the last decades, and were well explained by spring temperatures. Unlike in most passerine populations studied, synchrony has improved with rising spring temperatures. However, it had only a modest although statistically significant positive influence on breeding success. Spring temperatures do not seem to be used as cues for the timing of caterpillar food availability by willow tits. We conclude that responses to climatic warming seem to be population, species and habitat specific, necessitating research in a wide range of taxa in different climatic zones.  相似文献   

6.
Climate change could affect resource competition between resident and migratory bird species by changing the interval between their onsets of breeding or by altering their population densities. We studied interspecific nest-hole competition between resident great tits and migrant pied flycatchers in South-Western Finland over the past five decades (1953-2005). We found that appearance of fatal take-over trials, the cases where a pied flycatcher tried to take over a great tit nest but was killed by the tit, increased with a reduced interspecific laying date interval and with increasing densities of both tits and flycatchers. The probability of pied flycatchers taking over great tit nests increased with the density of pied flycatchers. Laying dates of the great tit and pied flycatcher are affected by the temperatures of different time periods, and divergent changes in these temperatures could consequently modify their competitive interactions. Densities are a result of reproductive success and survival, which can be affected by separate climatic factors in the resident great tit and trans-Saharan migrant pied flycatcher. On these bases we conclude that climate change has a great potential to alter the competitive balance between these two species.  相似文献   

7.
Long-distance migrants are particularly susceptible to climate change because of their multi-stage life-cycle, but understanding how climatic conditions at each of these stages influence population dynamics remains a key challenge. Here, we use long-term data from a UK population of Sand Martins Riparia riparia, a declining Afro-Palaearctic migrant, to investigate how weather on the wintering grounds and at passage sites impacts population size and arrival date. General linear models revealed that population size increased and arrival date advanced over the study period, and both were predicted by regional climatic variables in the previous winter and on passage. These results add to a growing body of evidence showing that population change in migrant birds is influenced by climatic conditions at all stages of the life cycle.  相似文献   

8.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons.  相似文献   

9.
Monarch butterflies (Danaus plexippus) undergo an iconic multi-generational migration, traveling thousands of kilometers from the summer breeding grounds in southern Canada to overwintering sites in central Mexico. This migration phenomena can be affected by climate change, which may have important implications on fitness and ultimately populations status. We investigated the long-term trends in fall migration phenology of monarchs using a 25-year dataset collected along the coast of Lake Erie in Ontario, Canada. We also investigated local long-term trends in weather covariates that have the potential to influence migration phenology at this site. Patterns in standardized daily counts of monarchs were compared with local weather covariates using two methods (i.e., monthly averages and moving windows) to assess difference in outputs between analytical approaches. Our results suggest that monarch migration timing (migration midpoint, average peak, first peak, and late passage) and weather covariates have been consistent over time, in direct contrast to a similar study in Cape May, New Jersey, which showed a significant increase in both fall temperature and a 16- to 19-day shift in monarch migration timing. Furthermore, our results differed between analytical approaches. With respect to annual variability in air temperature, our monthly average analysis suggested that for each degree increase in September air temperature, late season passage would advance 4.71 days (±1.59 SE, p = .01). However, the moving window analysis suggested that this result is likely spurious and found no significant correlations between migration timing and any weather covariates. Importantly, our results caution against extrapolating the effects of climate change on the migration phenology of the monarch across study regions and the need for more long-term monitoring efforts to better understand regional drivers of variability in migration timing.  相似文献   

10.
11.
12.
Observed phenological changes can be explained either by individual phenotypic plasticity or by evolutionary changes, but there is more evidence pointing towards phenotypic plasticity to explain the mechanism behind changes in bird phenology. However, most studies on phenology have been conducted on insectivorous bird species for which breeding is closely tied to temperature and insect emergence. In this study, we examined the consequences of climatic conditions on the nesting phenology of temperate breeding Canada Geese Branta canadensis maxima, which rely on a continuous food supply, during a 14‐year period (2003–16). We determined whether laying dates were plastically adjusted to spring environmental conditions, and whether this adjustment resulted in a laying date advancement. We further estimated the strength and shape of selection acting on breeding timing, by looking at the effect of laying date on the relative number of young successfully hatched in a nest. We found that Geese plastically adjusted their laying date to spring maximum temperature (and not to precipitation or ice break‐up), resulting in a 9‐day advancement of laying date in the population for that period. Laying date was also moderately repeatable (r = 0.23) and subject to directional selection, but stabilizing selection was negligible. We thus demonstrate how Canada Geese plastically adjust laying dates to temperature, which may further be beneficial to nesting success. Evolutionary change of laying date to selection related to climate change, however, is still possible.  相似文献   

13.
Climate-related changes associated with the California marine ecosystem have been documented; however, there are no studies assessing changes in terrestrial vertebrate phenology on the Pacific coast of western North America. We analyze the spring phenology of 21 Nearctic-Neotropical migratory songbird species in central and northern CA. Using observational and banding data at multiple sites, we evaluate evidence for a change in arrival timing being linked to either nonclimatic or multiscalar climatic explanations. Using correlation analysis, of the 13 species with a significant ( P <0.10) change in arrival, the arrival timing of 10 species (77%) is associated with both temperature and a large-scale climate oscillation index (El Niño Southern Oscillation, ENSO; North Atlantic Oscillation, NAO; and/or Pacific Decadal Oscillation, PDO) at least at one location. Eight of the 13 species (62%) are advancing their migratory timing. All species for which spring arrival is associated with climate at multiple locations are exhibiting changes ( n =5) and all species lacking evidence for association between migration phenology and climate ( n =3) exhibit no change. Migrants tend to arrive earlier in association with warmer temperatures, positive NAO indices, and stronger ENSO indices. Twelve species negatively correlate ( P ≤0.05) with local or regional temperature at least at one location; five species negatively correlate with ENSO. Eleven species' arrival is correlated ( P ≤0.05) with NAO; 10 are negatively associated. After an exhaustive literature search, this is apparently the first documentation of an association between NAO and migratory phenology in western North America.  相似文献   

14.
In the context of a changing climate, understanding the environmental drivers of marine megafauna distribution is important for conservation success. The extent of humpback whale breeding habitats and the impact of temperature variation on their availability are both unknown. We used 19 years of dedicated survey data from seven countries and territories of Oceania (1,376 survey days), to investigate humpback whale breeding habitat diversity and adaptability to climate change. At a fine scale (1 km resolution), seabed topography was identified as an important influence on humpback whale distribution. The shallowest waters close to shore or in lagoons were favored, although humpback whales also showed flexible habitat use patterns with respect to shallow offshore features such as seamounts. At a coarse scale (1° resolution), humpback whale breeding habitats in Oceania spanned a thermal range of 22.3–27.8°C in August, with interannual variation up to 2.0°C. Within this range, both fine and coarse scale analyses of humpback whale distribution suggested local responses to temperature. Notably, the most detailed dataset was available from New Caledonia (774 survey days, 1996–2017), where encounter rates showed a negative relationship to sea surface temperature, but were not related to the El Niño Southern Oscillation or the Antarctic Oscillation from previous summer, a proxy for feeding conditions that may impact breeding patterns. Many breeding sites that are currently occupied are predicted to become unsuitably warm for this species (>28°C) by the end of the 21st century. Based on modeled ecological relationships, there are suitable habitats for relocation in archipelagos and seamounts of southern Oceania. Although distribution shifts might be restrained by philopatry, the apparent plasticity of humpback whale habitat use patterns and the extent of suitable habitats support an adaptive capacity to ocean warming in Oceania breeding grounds.  相似文献   

15.
The capacity of migratory species to adapt to climate change may depend on their migratory and reproductive strategies. For example, reproductive output is likely to be influenced by how well migration and nesting are timed to temporal patterns of food abundance, or by temperature variations during the brood rearing phase. Based on two decades (1988–2009) of waterfowl counts from a boreal catchment in southern Finland we assessed how variation in ice break‐up date affected nesting phenology and breeding success in two sympatric duck species, Mallard Anas platyrhynchos and Eurasian Teal Anas crecca. In Fennoscandia these species have similar breeding habitat requirements but differ in migration distance; Teal migrate roughly seven times as far as do Mallard. Annual ice break‐up date was used as a proxy of spring ‘earliness’ to test the potential effect of climate change on hatching timing and breeding performance. Both species were capable of adapting their nesting phenology, and bred earlier in years when spring was early. However, the interval from ice break‐up to hatching tended to be longer in early springs in both species, so that broods hatched relatively later than in late springs. Ice break‐up date did not appear to influence annual number of broods per pair or annual mean brood size in either species. Our study therefore does not suggest that breeding performance in Teal and Mallard is negatively affected by advancement of ice break‐up at the population level. However, both species showed a within‐season decline in brood size with increasing interval between ice break‐up and hatching. Our study therefore highlights a disparity between individuals in their capacity to adjust to ice break‐up date, late breeders having a lower breeding success than early breeders. We speculate that breeding success of both species may therefore decline should a consistent trend towards earlier springs occur.  相似文献   

16.
Bright coloration of males in many animal species has inspiredresearchers for more than a century. In this field study, weinvestigated whether color variation between individuals isrelated to individual quality in pied flycatcher (Ficedulahypoleuca) males in terms of arrival time at the breeding sites.In addition to traditional visual color scoring, plumage color was measured using spectroradiometric measurements between 320and 700 nm. This range includes the near-ultraviolet wavebandfrom 320 to 400 nm. Males that arrived earlier at breedingsites had higher proportional UV reflectance in the crown andmantle. The proportional UV reflectance in the crown and mantlewas not related to traditionally scored general brownness inmales. However, adult males had a higher proportion of ultravioletin the plumage than yearling males or females. These resultssuggest that in pied flycatcher males, the UV reflectance ofplumage may be positively correlated with individual quality.  相似文献   

17.
Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate‐driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among‐population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space‐temperature and time‐temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature‐mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.  相似文献   

18.
ABSTRACT In apparent response to recent periods of global warming, some migratory birds now arrive earlier at stopover sites and breeding grounds. However, the effects of this warming on arrival times vary among locations and species. Migration timing is generally correlated with temperature, with earlier arrival during warm years than during cold years, so local variation in climate change might produce different effects on migration phenology in different geographic regions. We examined trends in first spring arrival dates (FADs) for 44 species of common migrant birds in South Dakota (1971–2006) and Minnesota (1964–2005) using observations compiled by South Dakota and Minnesota Ornithologists’ Unions. We found significant trends in FAD over time for 20 species (18 arriving earlier and two later) in South Dakota and 16 species (all earlier) in Minnesota. Of these species, 10 showed similar significant trends for both states. All 10 of these species exhibited significantly earlier arrival, and all were early spring migrants, with median FADs before 10 April in both states. Eighteen of the 44 species showed significant negative correlations of FADs with either winter (December–February) or spring (arrival month plus previous month) temperatures in one or both states. Interestingly, spring temperatures in both South Dakota and Minnesota did not warm significantly from 1971–2006, but winter temperatures in both states warmed significantly over the same time period. This suggests that the warmer winters disproportionately affected early spring migrants, especially those associated with aquatic habitats (seven of the 10 species showing significantly earlier spring arrival in both states). The stronger response to climate change by early spring migrants in our study is consistent with the results of several other studies, and suggests that migrants, especially early migrants, are capable of responding to local temperature conditions experienced on wintering grounds or along the migration route.  相似文献   

19.
Highly ornamented males are often thought to be better ableto provide females with resources, parental assistance, or goodgenes. Individual variation in such male abilities may overridethe costs of polygyny and therefore largely explain within-populationvariation in mating patterns. We investigated the influenceof variation in male ornamentation and the environment on thecosts of polygyny for female collared flycatchers (Ficedulaalbicollis), using data from a long-term study involving 2733breeding attempts over 19 years. We show that females sufferreduced reproductive success when mated polygynously but thatthe costs of polygyny depend on an interaction between maleornamentation and timing of breeding. Among early breeders,polygynously mated females experience higher reproductive successwhen mated to less ornamented males, but among late breeders,females mated polygynously to highly ornamented males were moresuccessful. We suggest that a high effort spent on obtainingextrapair matings early in the season renders highly ornamentedmales less able to assist two females in caring for the young.Thus, a male's ability to simultaneously gain from extrapairmatings and polygyny may be limited through direct effects onfemale reproductive success. Given such limitation, extrapairmatings may be expected to be less frequent in species withbiparental care and a high level of social polygyny.  相似文献   

20.
High rates of species extinction have been predicted for the next century as a consequence of climate change. Although species range shifts have been widely reported, evidence of changes in species frequency linked to recent climate change is scarce. Moreover, studies have mainly focused on mountainous ecosystems and species. There is thus a clear lack of understanding of the recent changes in species frequencies linked to climate change across their whole range. Using a large forest vegetation‐plot database, we investigated changes in cold and warm‐demanding forest plant species frequencies between the periods 1914–1987 and 1997–2013 in French lowlands and highlands. Changes in frequencies were assessed for 185 lowland (warm‐demanding), 135 sub‐montane (intermediate) and 104 montane (cold‐demanding) forest plant species. Observed changes were compared to predicted changes derived from species distribution model predictions. The frequency of montane and sub‐montane species strongly declined, whereas the frequency of lowland species remained steady in lowland areas. In highlands, the frequency of lowland, sub‐montane and montane species increased, remained steady and decreased, respectively. Predicted and observed trends of changes in the frequency of forest plant species were in agreement. These results clearly show that cold‐demanding species are currently declining in lowlands that correspond to their warm range margins, whereas warm‐demanding species are expanding in highlands that correspond to their cold range margins. These trends can be seen as early signs of future regional extinction and reshuffling of the spatial presence of species due to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号