首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vesicular protein synaptobrevin contributes to two mutually exclusive complexes in mature synapses. Synaptobrevin tightly interacts with the plasma membrane proteins syntaxin and SNAP 25 forming the SNARE complex as a prerequisite for exocytotic membrane fusion. Alternatively, synaptobrevin binds to the vesicular protein synaptophysin. It is unclear whether SNARE complex formation is diminished or facilitated when synaptobrevin is bound to synaptophysin. Here we show that the synaptophysin-synaptobrevin complex is increased in adult rat brain after repeated synaptic hyperactivity in the kindling model of epilepsy. Two days after the last kindling-induced stage V seizure the relative amount of synaptophysin-synaptobrevin complex obtained by co-immunoprecipitation from cortical and hippocampal membranes was increased twofold compared to controls. By contrast the relative amounts of various synaptic proteins as well as that of the SNARE complex did not change in membrane preparations from kindled rats compared to controls. The increased amount of synaptophysin-synaptobrevin complex in kindled rats supports the idea that this complex represents a reserve pool for synaptobrevin enabling synaptic vesicles to adjust to an increased demand for synaptic efficiency. We conclude that the synaptophysin-synaptobrevin interaction is involved in activity-dependent plastic changes in adult rat brain.  相似文献   

2.
The presence of unique proteins in synaptic vesicles of neurons suggests selective targeting during vesicle formation. Endocrine, but not other cells, also express synaptic vesicle membrane proteins and target them selectively to small intracellular vesicles. We show that the rat pheochromocytoma cell line, PC12, has a population of small vesicles with sedimentation and density properties very similar to those of rat brain synaptic vesicles. When synaptophysin is expressed in nonneuronal cells, it is found in intracellular organelles that are not the size of synaptic vesicles. The major protein in the small vesicles isolated from PC12 cells is found to be synaptophysin, which is also the major protein in rat brain vesicles. At least two of the minor proteins in the small vesicles are also known synaptic vesicle membrane proteins. Synaptic vesicle-like structures in PC12 cells can be shown to take up an exogenous bulk phase marker, HRP. Their proteins, including synaptophysin, are labeled if the cells are surface labeled and subsequently warmed. Although the PC12 vesicles can arise by endocytosis, they seem to exclude the receptor-mediated endocytosis marker, transferrin. We conclude that PC12 cells contain synaptic vesicle-like structures that resemble authentic synaptic vesicles in physical properties, protein composition and endocytotic origin.  相似文献   

3.
Synaptophysin interacts with synaptobrevin in membranes of adult small synaptic vesicles. The synaptophysin/synaptobrevin complex promotes synaptobrevin to built up functional SNARE complexes thereby modulating synaptic efficiency. Synaptophysin in addition is a cholesterol-binding protein. Depleting the membranous cholesterol content by filipin or beta-methylcyclodextrin (beta-MCD) decreased the solubility of synaptophysin in Triton X-100 with less effects on synaptobrevin. In small synaptic vesicles from rat brain the synaptophysin/synaptobrevin complex was diminished upon beta-MCD treatment as revealed by chemical cross-linking. Mice with a genetic mutation in the Niemann-Pick C1 gene developing a defect in cholesterol sorting showed significantly reduced amounts of the synaptophysin/synaptobrevin complex compared to their homo- or heterozygous littermates. Finally when using primary cultures of mouse hippocampus the synaptophysin/synaptobrevin complex was down-regulated after depleting the endogenous cholesterol content by the HMG-CoA-reductase inhibitor lovastatin. Alternatively, treatment with cholesterol up-regulated the synaptophysin/synaptobrevin interaction in these cultures. These data indicate that the synaptophysin/synaptobrevin interaction critically depends on a high cholesterol content in the membrane of synaptic vesicles. Variations in the availability of cholesterol may promote or impair synaptic efficiency by interfering with this complex.  相似文献   

4.
Synaptophysin is one of the major integral membrane proteins of the small (30–50 nm diameter) electron-translucent transmitter-containing vesicles in neurons and of similar vesicles in neuroendocrine cells. Since its expression is tightly linked to the occurrence of these vesicle types, we mutated the X-chromosomally located synaptophysin gene in embryonic stem cells for the generation of synaptophysin-deficient mice in order to study the consequence of synaptophysin ablation for the formation and function of such vesicles in vivo. the behavior and appearance of mice lacking synaptophysin was indistinguishable from that of their litter mates and reproductive capacity was comparable to normal mice. Furthermore, no drastic compensatory changes were noted in the expression of several other neuronal polypeptides or in the mRNA levels of synaptophysin isoforms, the closely related neuronal synaptoporin/synaptophysinII, and the ubiquitous pantophysin. Immunofluorescence microscopy of several neuronal and neuroendocrine tissues showed that overall tissue architecture was maintained in the absence of synaptophysin, and that the distribution of other synaptic vesicle components was not visibly affected. In electron-microscopic preparations, large numbers of vesicles with a diameter of 39.9 nm and an electron-translucent interior were seen in synaptic regions of synaptophysin-deficient mice; these vesicles could be labeled by antibodies against synaptic vesicle proteins, such as synaptobrevin 2.This research was supported by the DFG-SFB 317  相似文献   

5.
A protein with an apparent mol. wt of 18,000 daltons (synaptobrevin) was identified in synaptic vesicles from rat brain. Some of its properties were studied using monoclonal and polyclonal antibodies. Synaptobrevin is an integral membrane protein with an isoelectric point of approximately 6.6. During subcellular fractionation, synaptobrevin followed the distribution of small synaptic vesicles, with the highest enrichment in the purified vesicle fraction. Immunogold electron microscopy of subcellular particles revealed that synaptobrevin is localized in nerve endings where it is concentrated in the membranes of virtually all small synaptic vesicles. No significant labeling was observed on the membranes of peptide-containing large dense core vesicles. In agreement with these results, synaptobrevin immunoreactivity has a widespread distribution in nerve terminal-containing regions of the central and peripheral nervous system as shown by light microscopy immunocytochemistry. Outside the nervous system, synaptobrevin immunoreactivity was found in endocrine cells and cell lines (endocrine pancreas, adrenal medulla, PC12 cells, insulinoma cells) but not in other cell types, for example smooth muscle, skeletal muscle and exocrine pancreas. Thus, the distribution of synaptobrevin is similar to that of synaptophysin, a well-characterized membrane protein of small vesicles in neurons and endocrine cells.  相似文献   

6.
The synaptic vesicle protein synaptobrevin (VAMP) has recently been implicated as one of the key proteins involved in exocytotic membrane fusion. It interacts with the synaptic membrane proteins syntaxin I and synaptosome-associated protein (SNAP)-25 to form a complex which precedes exocytosis [Söllner et al. (1993b) Cell, 75, 409-418]. Here we demonstrate that the majority of synaptobrevin is bound to the vesicle protein synaptophysin in detergent extracts. No syntaxin I was found in this complex when synaptophysin-specific antibodies were used for immunoprecipitation. Conversely, no synaptophysin was associated with the synaptobrevin-syntaxin I complex when syntaxin-specific antibodies were used for immunoprecipitation. Thus, the synaptobrevin pool bound to synaptophysin is not available for binding to syntaxin I and SNAP-25, and vice versa. Synaptobrevin-synaptophysin binding was also demonstrated by chemical cross-linking in isolated nerve terminals. Furthermore, recombinant synaptobrevin II efficiently bound synaptophysin and its isoform synaptoporin, but not the more distantly related synaptic vesicle protein p29. Recombinant synaptobrevin I bound with similar efficiency, whereas the non-neuronal isoform cellubrevin displayed a lower affinity towards synaptophysin. Treatment with high NaCl concentrations resulted in a dissociation of the synaptobrevin-synaptophysin complex. In addition, the interaction of synaptobrevin with synaptophysin was irreversibly abolished by low amounts of SDS, while the interaction with syntaxin I was enhanced. We conclude that synaptophysin selectively interacts with synaptobrevin in a complex which excludes the t-SNAP receptors syntaxin I and SNAP-25, suggesting a role for synaptophysin in the control of exocytosis.  相似文献   

7.
Synaptophysin, an integral membrane protein of small synaptic vesicles, was expressed by transfection in fibroblastic CHO-K1 cells. The properties and localization of synaptophysin were compared between transfected CHO-K1 cells and native neuroendocrine PC12 cells. Both cell types similarly glycosylate synaptophysin and sort it into indistinguishable microvesicles. These become labeled by endocytic markers and are primarily concentrated below the plasmalemma and at the area of the Golgi complex and the centrosomes. A small pool of synaptophysin is transiently found on the plasma membrane. In CHO-K1 cells synaptophysin co-localizes with transferrin that has been internalized by receptor-mediated endocytosis. These findings suggest that synaptophysin in transfected CHO-K1 cells and neuroendocrine PC12 cells is directed into a pathway of recycling microvesicles which, in CHO cells, is shown to coincide with that of the transferrin receptor. They further indicate that fibroblasts have the ability to sort a synaptic vesicle membrane protein. Our results suggest a pathway for the evolution of small synaptic vesicles from a constitutively recycling organelle which is normally present in all cells.  相似文献   

8.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

9.
Biogenesis of synaptic vesicles in vitro   总被引:7,自引:3,他引:4       下载免费PDF全文
《The Journal of cell biology》1995,130(5):1041-1049
Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle membrane proteins from other cellular proteins, and the packaging of those unique proteins into vesicles of the correct size. By labeling an epitope-tagged variant of a synaptic vesicle protein, VAMP (synaptobrevin), at the cell surface of the neuroendocrine cell line PC12, synaptic vesicle biogenesis could be followed with considerable precision, quantitatively and kinetically. Epitope-tagged VAMP was recovered in synaptic vesicles within a few minutes of leaving the cell surface. More efficient targeting was obtained by using the VAMP mutant, del 61-70. Synaptic vesicles did not form at 15 degrees C although endocytosis still occurred. Synaptic vesicles could be generated in vitro from a homogenate of cells labeled at 15 degrees C. The newly formed vesicles are identical to those formed in vivo in their sedimentation characteristics, the presence of the synaptic vesicle protein synaptophysin, and the absence of detectable transferrin receptor. Brain, but not fibroblast cytosol, allows vesicles of the correct size to form. Vesicle formation is time and temperature-dependent, requires ATP, is calcium independent, and is inhibited by GTP-gamma S. Thus, two key steps in synaptic vesicle biogenesis have been reconstituted in vitro, allowing direct analysis of the proteins involved.  相似文献   

10.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

11.
Enterochromaffin-like (ECL) cells regulate gastric acid secretion through vesicular release of histamine. Until now, the molecular machinery of human ECL cells involved in the formation and release of vesicles is largely unknown. We analyzed tissue samples obtained from normal human gastric mucosa (n=4) and ECLomas (n=5) immunohistochemically using the APAAP method or double immunofluorescence confocal laser microscopy. Human pheochromocytomas (n=5) were investigated in parallel and compared to ECL cells. Secretory pathways were characterized using antibodies specific for marker proteins of large dense-core vesicles (LDCVs; islet cell antigen 512, chromogranin A, pancreastatin, and vesicular monoamine transporter 2) and small synaptic vesicle (SSV) analogues (synaptophysin). Tissues were also analyzed for expression of the peptide hormone processing enzymes, carboxypeptidase E and prohormone convertase 1, as well as the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, 25-kDa synaptosome-associated protein (SNAP25), syntaxin, and synaptobrevin. Immunoreactivity for markers of LDCVs and SSV analogues were detected in normal ECL cells and ECLomas. Both tissues also showed expression of carboxypeptidase E and prohormone convertase 1. Analysis of vesicular SNARE (v-SNARE) and target membrane SNARE (t-SNARE) proteins revealed the presence of SNAP25, syntaxin, and synaptobrevin in normal and neoplastic ECL cells. Our data suggest that ECL cells possess the two vesicle types of regulated neuroendocrine secretory pathways, LDCVs and SSV analogues. Since ECL cells also contain typical SNARE proteins, the molecular machinery underlying secretory processes in this cell type appears to be identical to the secretory apparatus of neuroendocrine cells and neurons. In addition, our findings suggest that the secretory apparatus of ECL cells is maintained during neoplastic transformation. Accepted: 10 June 1999  相似文献   

12.
A novel membrane protein from rat brain synaptic vesicles with an apparent 29,000 Mr (p29) was characterized. Using monospecific polyclonal antibodies, the distribution of p29 was studied in a variety of tissues by light and electron microscopy and immunoblot analysis. Within the nervous system, p29 was present in virtually all nerve terminals. It was selectively associated with small synaptic vesicles and a perinuclear region corresponding to the area of the Golgi complex. P29 was not detected in any other subcellular organelles including large dense-core vesicles. The distribution of p29 in various subcellular fractions from rat brain was very similar to that of synaptophysin and synaptobrevin. The highest enrichment occurred in purified small synaptic vesicles. Outside the nervous system, p29 was found only in endocrine cell types specialized for peptide hormone secretion. In these cells, p29 had a distribution very similar to that of synaptophysin. It was associated with microvesicles of heterogeneous size and shape that are primarily concentrated in the centrosomal-Golgi complex area. Secretory granules were mostly unlabeled, but their membrane occasionally contained small labeled evaginations. Immunoisolation of subcellular organelles from undifferentiated PC12 cells with antisynaptophysin antibodies led to a concomitant enrichment of p29, synaptobrevin, and synaptophysin, further supporting a colocalization of all three proteins. P29 has an isoelectric point of approximately 5.0 and is not N-glycosylated. It is an integral membrane protein and all antibody binding sites are exposed on the cytoplasmic side of the vesicles. Two monoclonal antibodies raised against p29 cross reacted with synaptophysin, indicating the presence of related epitopes. P29, like synaptophysin, was phosphorylated on tyrosine residues by endogenous tyrosine kinase activity in intact vesicles.  相似文献   

13.
Certain properties of the highly specialized synaptic transmitter vesicles are shared by constitutively occurring vesicles. We and others have thus identified a cDNA in various nonneuroendocrine cell types of rat and human that is related to synaptophysin, one of the major synaptic vesicle membrane proteins, which we termed pantophysin. Here we characterize the gene structure, mRNA and protein expression, and intracellular distribution of pantophysin. Its mRNA is detected in murine cell types of nonneuroendocrine as well as of neuroendocrine origin. The intron/exon structure of the murine pantophysin gene is identical to that of synaptophysin except for the last intron that is absent in pantophysin. The encoded polypeptide of calculated mol wt 28,926 shares many sequence features with synaptophysin, most notably the four hydrophobic putative transmembrane domains, although the cytoplasmic end domains are completely different. Using antibodies against the unique carboxy terminus pantophysin can be detected by immunofluorescence microscopy in both exocrine and endocrine cells of human pancreas, and in cultured cells, colocalizing with constitutive secretory and endocytotic vesicle markers in nonneuroendocrine cells and with synaptophysin in cDNA-transfected epithelial cells. By immunoelectron microscopy, the majority of pantophysin reactivity is detected at vesicles with a diameter of < 100 nm that have a smooth surface and an electron-translucent interior. Using cell fractionation in combination with immunoisolation, these vesicles are enriched in a light fraction and shown to contain the cellular vSNARE cellubrevin and the ubiquitous SCAMPs in epithelial cells and synaptophysin in neuroendocrine or cDNA-transfected nonneuroendocrine cells and neuroendocrine tissues. Pantophysin is therefore a broadly distributed marker of small cytoplasmic transport vesicles independent of their content.  相似文献   

14.
15.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.  相似文献   

16.
We have previously shown the presence of the glycine transporter GLYT1 in glutamatergic terminals of the rat brain. In this study we present immunohistochemical and biochemical evidence indicating that GLYT1 is expressed not only at the plasma membrane of glutamatergic neurons, but also at synaptic vesicles. Confocal microscopy, immunoblots analysis of a highly purified synaptic vesicle fraction and immunoisolation of synaptic vesicles with anti-synaptophysin antibodies strongly suggested the presence of GLYT1 in synaptic vesicles. Moreover, direct observation with the electron microscope of purified vesicles immunoreacted with anti-GLYT1 and colloidal gold demonstrated that about 40% of the small vesicles of the purified vesicle fraction contained GLYT1. Double labeling for GLYT1 and synaptophysin of this vesicular fraction revealed that more of ninety percent of them were synaptic vesicles. Moreover, a significant part of the GLYT1 containing vesicles (86%) also contained the vesicular glutamate transporter vGLUT1, suggesting a functional role of GLYT1 in a subpopulation of glutamatergic vesicles.  相似文献   

17.
Rab3A is a small GTP-binding protein highly concentrated on synaptic vesicles. Like other small GTP-binding proteins it is thought to cycle between a soluble and a membrane-associated state. To determine at which stage of the life cycle of synaptic vesicles rab3A is associated with their membranes, the localization of the protein in neurons and neuroendocrine cells at different developmental and functional stages was investigated. In all cases, rab3A was colocalized with synaptic vesicle markers at the cell periphery, but was absent from the Golgi area, suggesting that rab3A associates with vesicles distally to the Golgi complex and dissociates from vesicle membranes before they recycle to this region. Immunofluorescence experiments carried out on frog motor end plates demonstrated that massive exocytosis of synaptic vesicles is accompanied by a translocation of rab3A to the cell surface. The selective localization of rab3A on synaptic vesicles at stages preceding their fusion with the plasmalemma suggests that the protein is part of a regulatory machinery that is assembled onto the vesicles in preparation for exocytosis.  相似文献   

18.
CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins   总被引:5,自引:0,他引:5  
Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.  相似文献   

19.
Abstract: Western blot analysis showed that the human neuroblastoma SH-SY5Y expresses the proteins synaptotagmin I, synaptobrevin, synapsin I, rab3a, syntaxin, SNAP-25, NSF, α-SNAP, and munc-18, which have been implicated in the movement, docking, and fusion of vesicles during exocytosis from other neuroendocrine cells. The subcellular localization of secretogranins I and II, synaptotagmin I, neuropeptide Y, rab3a, synaptobrevin, synaptophysin, and syntaxin was investigated by immunofluorescence microscopy and revealed punctate staining patterns characteristic of secretory vesicles. The comigration of noradrenaline, secretogranin II, and dopamine-β-hydroxylase on sucrose-D2O gradient fractions indicates the presence of a population of noradrenaline-containing large dense-cored vesicles (LDCVs). In addition, a lighter vesicle population is also present that does not appear to be noradrenergic and contains a 48-kDa synaptophysin antigen absent from the large dense-cored vesicles. Immunocytochemical experiments show that not all of the vesicles that express synaptotagmin I contain secretogranin II. Thus, our studies suggest that two types of vesicle are present in SH-SY5Y cells, one of which, the LDCVs, contains noradrenaline. These findings confirm our previous studies suggesting that depolarization-evoked release of noradrenaline from SH-SY5Y occurs by LDCV exocytosis. This enhances the value of SH-SY5Y as a cell line in which to study the mechanism by which noradrenaline release is regulated.  相似文献   

20.
To investigate the molecular interactions of synaptophysin I and vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin II during exocytosis, we have used time-lapse videomicroscopy to measure fluorescence resonance energy transfer in live neurons. For this purpose, fluorescent protein variants fused to synaptophysin I or VAMP2 were expressed in rat hippocampal neurons. We show that synaptophysin I and VAMP2 form both homo- and hetero-oligomers on the synaptic vesicle membrane. When exocytosis is stimulated with alpha-latrotoxin, VAMP2 dissociates from synaptophysin I even in the absence of appreciable exocytosis, whereas synaptophysin I oligomers disassemble only upon incorporation of the vesicle with the plasma membrane. We propose that synaptophysin I has multiple roles in neurotransmitter release, regulating VAMP2 availability for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and possibly participating in the late steps of exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号