首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Administration of estrogen to gilts on Days 9 and 10 of pregnancy results in total embryonic loss by Day 18. The present study examined changes in the uterine endometrial surface and secretion during conceptus attachment in control and estrogen-treated (Days 9 and 10) pregnant gilts. Gilts were unilaterally hysterectomized on either Days 12 and 14 or Days 16 and 18 of gestation. Uterine horns were flushed with saline and conceptuses were evaluated. Intact conceptuses were recovered from all control gilts, whereas estrogen-treated gilts contained normal intact conceptuses only on Day 12 of gestation. Antiviral activity, which reflects conceptus viability, was reduced (p less than 0.01) in uterine flushings after Day 14 in estrogen-treated gilts. Culture of endometrial explants with [3H]glucosamine revealed several glycoproteins that are synthesized during the period of conceptus attachment; however, no difference in glycoprotein synthesis between treatment groups was detected by analysis with two-dimensional PAGE and fluorography. Analyses of the uterine epithelium by scanning and transmission electron microscopy demonstrated that estrogen administration caused an alteration in the uterine surface, a thinning of the uterine epithelial glycocalyx, and a reduction of cationic ferritin binding to the microvilli of the uterine epithelium. Results indicate that conceptus mortality after early administration of estrogen is associated with alterations in the uterine endometrial surface during the period of conceptus attachment in the pig.  相似文献   

3.
Analysis of osteopontin at the maternal-placental interface in pigs   总被引:11,自引:0,他引:11  
Noninvasive, epitheliochorial placentation in the pig follows a prolonged preimplantation period characterized by migration, spacing and elongation of conceptuses, and secretion of estrogen for maternal recognition of pregnancy. Osteopontin (OPN) is an extracellular matrix protein that binds integrins to promote cell-cell attachment and communication. OPN appears to play a key role in conceptus implantation and maintenance of pregnancy in sheep; however, a role for OPN in the porcine uterus has not been established. Therefore, this study examined OPN expression and function in the porcine uterus and conceptus (embryo/fetus and associated extraembryonic membranes). Northern and slot blot hybridization detected an increase in endometrial OPN expression between Days 25 and 30, and levels remained elevated through Day 85 of pregnancy. In situ hybridization localized OPN mRNA to discrete regions of the uterine luminal epithelium (LE) on Day 15 of pregnancy and to the entire LE thereafter. Glandular epithelial (GE) expression of OPN mRNA was first detected on Day 35 of pregnancy and increased through Day 85. Both 70- and 45-kDa forms of OPN protein were detected in cyclic and pregnant endometrium by Western blotting. OPN protein was localized to the LE and GE by immunofluorescence; however, only the 70-kDa OPN was detected in uterine flushings. OPN protein was present along the entire uterine-placental interface after Day 30 of pregnancy. In addition, OPN mRNA and protein were localized to immune-like cells within the stratum compactum of the endometrium in both Day 9 cyclic and pregnant gilts. Incubation of OPN-coated microbeads with porcine trophectoderm and uterine luminal epithelial cells induced Arg-Gly-Asp (RGD)-dependent integrin activation and transmembrane accumulation of cytoskeletal molecules at the apical cell surface as assessed by immunofluorescence detection of talin or alpha-actinin as markers for focal adhesions. These results suggest that OPN, expressed by uterine epithelium and immune cells, may interact with receptors (i.e., integrins) on conceptus and uterus to promote conceptus development and signaling between these tissues as key contributors to attachment and placentation in the pig.  相似文献   

4.
Secreted phosphoprotein one (SPP1, osteopontin) may regulate conceptus implantation and placentation. We investigated effects of progesterone (P(4)) and the conceptus on expression and localization of SPP1 in the ovine uterus. Steady-state levels of SPP1 mRNA in the endometrium of unilaterally pregnant ewes did not differ significantly between nongravid and gravid horns within their respective days of pregnancy; however, levels did increase as pregnancy progressed. SPP1 mRNA was detectable in the glandular epithelium (GE) of both nongravid and gravid horns via in situ hybridization. SPP1 protein was localized to the apical surface of the luminal epithelium of both nongravid and gravid uterine horns. Gravid horns exhibited extensive stromal SPP1 on Days 40 through 120, whereas SPP1 was markedly lower in the stroma of nongravid uterine horns through Day 80 of pregnancy. By Day 120, stromal expression of SPP1 between nongravid and gravid horns was similar. Long-term P(4) treatment of ovariectomized ewes induced SPP1 in the uterine stroma and GE. A bioactive 45-kDa SPP1 fragment was purified from uterine secretions and promoted ovine trophectoderm cell attachment in vitro. Interestingly, increased stromal cell expression of SPP1 was positively associated with vascularization as assessed by von Willebrand factor staining. Finally, ovine uterine artery endothelial cells produced SPP1 during outgrowth into three-dimensional collagen matrices in an in vitro model system that recapitulates angiogenesis. Collectively, P(4) induces and the conceptus further stimulates SPP1 in uterine GE and stroma, where SPP1 likely influences histotrophic and hematotrophic support of conceptus development.  相似文献   

5.
Major histocompatibility complex (MHC) class I molecules, consisting of an alpha chain and beta2-microglobulin (beta2MG), play an important role in immune rejection responses by discriminating self and nonself and are increased by type I interferons during antiviral responses. Interferon tau (IFNtau), the pregnancy-recognition signal in ruminants, is a type I interferon produced by the ovine conceptus between Days 11 and 21 of gestation. In study 1, expression of MHC class I alpha chain and beta2MG mRNA and protein was detected primarily in endometrial luminal epithelium (LE) and glandular epithelium (GE) on Days 10 and 12 of the estrous cycle and pregnancy. On Days 14-20 of pregnancy, MHC class I and beta2MG expression increased only in endometrial stroma and GE and, concurrently, was absent in LE and superficial ductal GE (sGE). Although neither MHC class I nor beta2MG proteins were detected in Day 20 trophectoderm, beta2MG mRNA was detected in conceptus trophectoderm. In study 2, cyclic ewes were ovariectomized on Day 5, treated daily with progesterone to Day 16, received intrauterine infusions between Days 11 and 16 of either control serum proteins or recombinant ovine IFNtau, and were hysterectomized on Day 17. The IFNtau increased MHC class I and beta2MG expression only in endometrial stroma and GE. During pregnancy, MHC class I and beta2MG gene expression is inhibited in endometrial LE and sGE but, paradoxically, is stimulated by IFNtau in the stroma and GE. The silencing of MHC class I alpha chain and beta2MG genes in the endometrial LE and sGE during pregnancy recognition and establishment may be a critical mechanism preventing immune rejection of the conceptus allograft.  相似文献   

6.
Uteri recovered from cyclic gilts (n = 5) on Days 15-19 and pregnant animals (n = 34) on Days 13-40 were opened and examined under UV light. A line of greenish fluorescence was present in the mesometrial region in contact with embryonic membranes at Day 13. Small patches of reddish fluorescence subsequently appeared on the uterine mucosa near the embryonic disc, and these increased in intensity and size until they encompassed the entire area of contact between each conceptus and the endometrium, for lengths of about 20 cm, by Day 29. Fluorescence then diminished gradually and was almost totally absent by Day 40. Three additional gilts were unilaterally hysterectomized on Day 15 and treated with Evans blue dye 10 min before removal of the second uterine horn. Both horns were opened and compared under UV light, but no difference in the pattern of fluorescence could be detected. All fluorescence was associated with uterine rather than conceptus tissues. The occurrence of autofluorescence in uteri of pregnant pigs precludes use of Evans blue dye as an indicator of vascular permeability.  相似文献   

7.
Fibroblast growth factor 7 (FGF7) stimulates cell proliferation, differentiation, migration and angiogenesis. The consensus is that FGF7, expressed by mesenchymal cells, binds FGF receptor 2IIIb (FGFR2) on epithelia, thereby mediating epithelial-mesenchymal interactions. The pig uterus is unique in that FGF7 is expressed by the luminal epithelium (LE) and FGFR2 is expressed by the LE, glandular epithelium (GE), and trophectoderm to effect proliferation and differentiated cell functions during conceptus development and implantation. FGF7 expression by the uterine LE of pigs increases between Days 9 and 12 of the estrus cycle and pregnancy, as circulating concentrations of progesterone increase, progesterone receptors (PGR) in the uterine epithelia decrease, and the conceptuses secrete estradiol-17beta (E(2)), for pregnancy recognition. Furthermore, E(2) increases the expression of FGF7 in pig uterine explants. The present study investigates the relationships between progesterone, E(2), and their receptors and the expression of FGF7 in the pig uterus in vivo. Pigs were ovariectomized on Day 4 of the estrus cycle and injected i.m. daily from Day 4 to Day 12 with either corn oil (CO), progesterone (P4), P4 and ZK317,316 (PZK), E(2), P4 and E(2) (PE), or P4 and ZK and E(2) (PZKE). All gilts (n = 5/treatment) were hysterectomized on Day 12. The results suggest that: 1) P4 is permissive to FGF7 expression by down-regulating PGR in LE; 2) P4 stimulates PGR-positive uterine stromal cells to release an unidentified progestamedin that induces FGF7 expression by LE; 3) E(2) and P4 can induce FGF7 when PGR are rendered nonfunctional by ZK; and 4) E(2) from conceptuses interacts via estrogen receptor alpha, but not estrogen receptor beta in LE to induce maximal expression of FGF7 in LE on Day 12 of pregnancy in pigs.  相似文献   

8.
Ubiquitin cross-reactive protein (UCRP) is a 17-kDa protein that shows cross-reactivity with ubiquitin antisera and retains the carboxyl-terminal Leu-Arg-Gly-Gly amino acid sequence of ubiquitin that ligates to, and directs degradation of, cytosolic proteins. It has been reported that bovine endometrial UCRP is synthesized and secreted in response to conceptus-derived interferon-tau (IFNtau). In the present studies, UCRP mRNA and protein were detected in ovine endometrium. Ovine UCRP mRNA was detectable on Day 13, peaked at Day 15, and remained high through Day 19 of pregnancy. The UCRP mRNA was localized to the luminal epithelium (LE), stromal cells (ST) immediately beneath the LE, and shallow glandular epithelium (GE) on Day 13, but it extended to the deep GE, deep ST, and myometrium of uterine tissues by Day 15 of pregnancy. Western blotting revealed induction of UCRP in the endometrial extracts from pregnant, but not cyclic, ewes. Ovine UCRP was also detected in uterine flushings from Days 15 and 17 of pregnancy and immunoprecipitated from Day 17 pregnant endometrial explant-conditioned medium. Treatment of immortalized ovine LE cells with recombinant ovine (ro) IFNtau induced cytosolic expression of UCRP, and intrauterine injection of roIFNtau into ovariectomized cyclic ewes induced endometrial expression of UCRP mRNA. These results are the first to describe temporal and spatial alterations in the cellular localization of UCRP in the ruminant uterus. Collectively, UCRP is synthesized and secreted by the ovine endometrium in response to IFNtau during early pregnancy. Because UCRP is present in the uterus and uterine flushings, it may regulate endometrial proteins associated with establishment and maintenance of early pregnancy in ruminants.  相似文献   

9.
The extracellular matrix protein osteopontin (OPN) is a component of histotroph that increases in uterine flushings from pregnant ewes during the peri-implantation period and is localized on the apical surfaces of the uterine luminal epithelium (LE) and conceptus trophectoderm (Tr). The potential involvement of OPN in the implantation adhesion cascade in sheep was investigated by examining temporal, spatial, and potential functional relationships between OPN, Muc-1, and integrin subunits during the estrous cycle and early pregnancy. Immunoreactive Muc-1 was highly expressed at the apical surfaces of uterine luminal (LE) and glandular epithelium (GE) in both cycling and pregnant ewes but was decreased dramatically on LE by Day 9 and was nearly undetectable by Day 17 of pregnancy when intimate contact between LE and Tr begins. In contrast, integrin subunits alpha(v), alpha(4), alpha(5), beta(1), beta(3), and beta(5) were constitutively expressed on conceptus Tr and at the apical surface of uterine LE and GE in both cyclic and early pregnant ewes. The apical expression of these subunits could contribute to the apical assembly of several OPN receptors including the alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5), alpha(4)beta(1), and alpha(5)beta(1) heterodimers on endometrial LE and GE, and conceptus Tr in sheep. Functional analysis of potential OPN interactions with conceptus and endometrial integrins was performed on LE and Tr cells in vitro using beads coated with OPN, poly-L-lysine, or recombinant OPN in which the Arg-Gly-Asp sequence was replaced with RGE or RAD. Transmembrane accumulation of talin or alpha-actinin at the apical surface of uterine LE and conceptus Tr cells in contact with OPN-coated beads revealed functional integrin activation and cytoskeletal reorganization in response to OPN binding. These results provide a physiological framework for the role of OPN, a potential mediator of implantation in sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE responsible for adhesion for initial conceptus attachment.  相似文献   

10.
This study was undertaken to characterize uterine immune factors involved in the establishment of pregnancy in gilts. Thirty crossbred Yorkshire-Landrace gilts of similar age and weight were observed twice a day for oestrous behaviour with intact boars. On the day of first standing oestrus (Day 0) and 12h later, 15 gilts were inseminated with pooled semen from Duroc boars of proven fertility. Pregnant gilts were slaughtered either on Days 10, 15 or 25 of gestation (n=5 per day). The other 15 gilts were not inseminated and were slaughtered on either Days 0, 10 or 15 of the oestrous cycle (n=5 per day). Immediately after slaughter, endometrial tissue samples from the mesometrial side were removed for gene expression using RNase protection assay and in situ hybridization methodologies. The other uterine horn was flushed with 20 ml of PBS to collect the uterine fluid. In pregnant gilts, endometrial interleukin (IL)-6 mRNA expression was higher on Day 15 than on Days 10 and 25 (P<0.01 and P<0.1, respectively). On Day 15, IL-6 expression was also significantly higher (P<0.01) in pregnant gilts than in cyclic gilts. In both pregnant and cyclic gilts, transforming growth factor (TGF)-beta2 in uterine fluid was significantly higher (P<0.0001) on Day 15 than on Day 10. At the gene expression level, TGF-beta2 also increased between Days 10 and 15 in both cyclic and pregnant gilts but differences were not significant. On Day 15, concentrations of interferon-gamma and prostaglandin E(2) (PGE(2)) in uterine fluid were markedly higher (P<0.001) in pregnant gilts than in cyclic gilts, whereas the total amount of TGF-beta2 in uterine fluid and its endometrial expression were approximately 70% higher although this increase was not significant. Finally, tumour-necrosis factor-alpha and granulocyte-macrophage/colony-stimulating factor mRNA expressions were undetectable in all endometrial samples. In conclusion, production and/or expression of uterine TGF-beta2, IL-6 and PGE(2) increased during the embryonic attachment period and are coincidental with embryonic interferon-gamma production.  相似文献   

11.
Conceptus-uterine communication is established during trophoblastic elongation when the conceptus synthesizes and releases estrogen, the maternal recognition signal in the pig. Interleukin-1beta (IL-1beta) is a differentially expressed gene during rapid trophoblastic elongation in the pig. The current investigation determined conceptus and endometrial changes in gene expression for IL-1beta, IL-1 receptor antagonist (IL-1Rant), IL-1 receptor type 1 (IL-1RT1), and IL-1 receptor accessory protein (IL-1RAP) in developing peri- and postimplantation conceptuses as well as uterine endometrium collected from cyclic and pregnant gilts. Conceptus IL-1beta gene expression was enhanced during the period of rapid trophoblastic elongation compared with earlier spherical conceptuses, followed by a dramatic decrease in elongated Day 15 conceptuses. IL-1RT1 and IL-1RAP gene expression was greater in Day 12 and 15 filamentous conceptuses compared with earlier morphologies while IL-1Rant gene expression was unchanged by conceptus development. The uterine lumenal content of IL-1beta increased during the process of trophoblastic elongation on Day 12. Uterine IL-1beta content declined on Day 15, reaching a nadir by Day 18 of pregnancy. IL-1beta gene expression in porcine conceptuses was temporally associated with an increase in endometrial IL-1RT1 and IL-1RAP gene expression in pregnant gilts. Endometrial IL-1beta and IL-1Rant gene expression were lowest during Days 10-15 of the estrous cycle and pregnancy. The temporal expression of IL-1beta during conceptus development and the initiation of conceptus-uterine communication suggests conceptus IL-1beta synthesis plays an important role in porcine conceptus elongation and the establishment of pregnancy in the pig.  相似文献   

12.
Previous gene mapping analyses revealed a quantitative trait locus for uterine capacity on chromosome 8. Comparison of porcine and human genetic maps suggests that the bone morphogenetic protein receptor IB (BMPR-IB) gene may be located near this region. The objectives of this study were to 1) clone the full coding region for BMPR-IB, 2) examine BMPR-IB gene expression by the endometrium and its cellular localization in cyclic and pregnant gilts, and 3) map the BMPR-IB gene. By iterative screening of an expressed sequence tag library, we obtained a 3559-base pair cDNA clone including the full coding region of BMPR-IB. Endometrial BMPR-IB mRNA expression of White composite gilts was determined by Northern blotting in Days 10, 13, and 15 cyclic and Days 10, 13, 15, 20, 30, and 40 pregnant gilts. In cyclic gilts, endometrial BMPR-IB mRNA expression was elevated on Days 13 and 15 (P < 0.01) compared with Day 10. Expression of BMPR-IB mRNA was localized in both luminal and glandular epithelium on Day 15. However, in pregnant gilts, BMPR-IB mRNA expression was not significantly different in the endometrium from Day 10 to Day 20, and it was significantly decreased on Days 30 and 40 (P = 0.011). The BMPR-IB gene was mapped to 108 cM on chromosome 8. These findings show that BMPR-IB mRNA expression is regulated differently in cyclic and pregnant gilts; this pattern of gene expression may be important for endometrial function during the luteal phase of the estrous cycle as compared with early pregnancy.  相似文献   

13.
Endometrial and conceptus tissues were obtained on Days 10.5, 11, 12, 16 and 25 of pregnancy and Day 25 of pseudopregnancy of gilts and incubated for 6 h in Minimal Essential Medium (5 ml) containing 35 ng [3H]progesterone. Metabolism of [3H]progesterone to oestrone, oestradiol and oestriol was determined by gas and high-pressure liquid chromatography and successive recrystallizations with unlabelled standards. Conceptuses collected between Days 10.5 and 12 were spherical, tubular or filamentous and incubated with 500 mg endometrium and [3H]progesterone. Production of oestrone by spherical conceptuses was not detected, but was 44-47 pg/tubular conceptus and 21 pg/filamentous conceptus. A similar trend was observed for oestradiol. Conceptus tissues from Days 16 and 25 (chorion) were most active in producing oestrone (123 and 520 pg/mg tissue, respectively) and oestradiol (277 and 876 pg/mg tissue, respectively). Endometrial oestrogen production was less than that for conceptus tissue for oestrone and oestradiol on Days 16 and 25 of gestation. Coincubations of endometrium and conceptus tissues had lower oestrogen production than conceptus alone. Endometrium from Day 25 of pseudopregnancy metabolized [3H]progesterone to several non-polar metabolites, but no oestrogens were detected. An unidentified phenolic metabolite of [3H]progesterone was detected in higher quantities than either oestrone or oestradiol; 445 to 461 pg/conceptus at the tubular stage. These results indicate temporal changes in the conversion of [3H]progesterone to oestrogens by conceptus and endometrial tissue from pregnant gilts, but not endometrium from pseudopregnant gilts.  相似文献   

14.
Progesterone modulation of osteopontin gene expression in the ovine uterus   总被引:12,自引:0,他引:12  
Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNtau) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i. u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 136.317 (ZK; progesterone receptor [PR] antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNtau did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.  相似文献   

15.
Osteopontin (OPN) is a phosphorylated and glycosylated, secreted protein that is present in various epithelial cells and biological fluids. On freezing and thawing or treatment with proteases, the native 70-kDa protein gives rise to 45- and 24-kDa fragments. Secreted OPN functions as an extracellular matrix (ECM) protein that binds cell surface receptors to mediate cell-cell adhesion, cell-ECM communication, and cell migration. In sheep and humans, OPN is proposed to be a secretory product of uterine glandular epithelium (GE) that binds to uterine luminal epithelium (LE) and conceptus trophectoderm to mediate conceptus attachment, which is essential to maintain pregnancy through the peri-implantation period. Cell-cell adhesion, communication, and migration likely are important at the interface between uterus and placenta throughout pregnancy, but to our knowledge, endometrial and/or placental expression of OPN beyond the peri-implantation period has not been documented in sheep. Therefore, the present study determined temporal and spatial alterations in OPN mRNA and protein expression in the ovine uterus between Days 25 and 120 of pregnancy. The OPN mRNA in total ovine endometrium increased 30-fold between Days 40 and 80 of gestation. In situ hybridization and immunofluorescence analyses revealed that the predominant source of OPN mRNA and protein throughout pregnancy was the uterine GE. Interestingly, the 45-kDa form of OPN was detected exclusively, continuously, and abundantly along the apical surface of LE, on conceptus trophectoderm, and along the uterine-placental interface of both interplacentomal and placentomal regions through Day 120 of pregnancy. The 45-kDa OPN is a proteolytic cleavage fragment of the native 70-kDa OPN, and it is the most abundant form in uterine flushes during early pregnancy. The 45-kDa OPN is more stimulatory to cell attachment and cell migration than the native 70-kDa protein. Collectively, the present results support the hypothesis that ovine OPN is a component of histotroph secreted by the uterine GE that accumulates at the uterine-placental interface to influence maternal-fetal interactions throughout gestation in sheep.  相似文献   

16.
17.
In gilts, a high plane of nutrition during early pregnancy often results in increased embryo mortality, possibly related to changes in embryo-uterine asynchrony at a critical stage of pregnancy (around Day 11). Therefore, in the present study, uterine luminal proteins and estrogens were studied between Days 5 and 16 after the onset of estrus in gilts on either a normal (2.5 kg/d, cyclic and pregnant gilts) or a high (4.0 kg/d, pregnant gilts only) feeding level. Conceptus recovery rate between Days 5 and 12 was not affected by the feeding level during early pregnancy, neither were systemic progesterone levels. Between Days 9 and 11, dramatic changes took place in the protein composition of the uterine luminal 10kD+ proteins, shifting from most (90%) of the acidic proteins at Day 5 and 7 to approximately 50% at Day 11/12, especially due to an increase in basic proteins with an iso-electrical point of more than 8. This shift occurred most rapidly for the pregnant gilts at the high feeding level and least rapidly in the cyclic gilts, resulting in significant differences in the relative amount of acidic proteins at Day 10 and 11 after the onset of estrus (P < 0.05). Similarly, levels of estrogens in the uterine flushings at Days 10, 11 and 12 were always highest for the pregnant gilts on the high feeding level and were always lowest in the cyclic gilts (P < 0.05); pregnant gilts on the normal feeding level showed intermediate estrogen levels. The fact that gilts on a high feeding level during early pregnancy show more rapid changes in the uterine luminal protein composition and embryonic estrogen production seems to suggest that the rate of these changes may be related to embryo survival.  相似文献   

18.
Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.  相似文献   

19.
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号