首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith, Kendall O. (Baylor University College of Medicine, Houston, Tex.), and Melvin Trousdale. Multiple-tailed T4 bacteriophage. J. Bacteriol. 90:796-802. 1965.-T4 phage particles which appeared to have multiple-tails were observed. Experiments were designed to minimize the possibility that superimposed particles might account for this appearance. Double-tailed particles occurred at a frequency as high as 10%. Triple- and quadruple-tailed particles were extremely rare. All attempts to isolate pure lines of multiple-tailed phage have failed. Multiple-tailed phage particles were produced in highest frequency by Escherichia coli cells in the logarithmic growth phase which had been inoculated at a multiplicity of about 2.  相似文献   

2.
Bacteriophage T4 genome.   总被引:2,自引:0,他引:2  
  相似文献   

3.
Bacteriophage T4 gene 25.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

4.
Bacteriophage T4 gene 27.   总被引:1,自引:1,他引:1       下载免费PDF全文
  相似文献   

5.
Bacteriophage T4 gene 26.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

6.
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates.  相似文献   

7.
The folate compound which is a structural component of the Escherichia coli T-even bacteriophage baseplates, has been identified as the hexaglutamyl form of folic acid using a new chromatographic procedure (Baugh, C.M., Braverman, E. and Nair, M.G. (1974) Biochemistry 13, 4952-4957). It has also been found that the host cell contains a variety of polyglutamyl forms of folic acid. The major form is the triglutamate (about 50%) but small amounts of higher molecular weight folates including the octaglutamate (1.8%) have been identified. Upon infection with wild-type T4D bacteriophage there is a shift in the distribution of the folate compounds so that the folyl polyglutamyl compounds having the higher molecular weights are increased. Infection of E. coli with baseplate mutants of T4D containing an amber mutation in gene 28 resulted in the formation of significant amounts (over 7%) of folate compound(s) of molecular weight much higher than those observed either in uninfected cells or cells infected with wild-type T4D. It is suggested that the T4D gene 28 product functions to cleave glutamate residues from high molecular weight folyl polyglutamates to increase the availability of the folyl hexaglutamate for virus assembly.  相似文献   

8.
A maturable head-related particle of bacteriophage T4 has been identified and characterized. This epsilon-particle has the same size as the prehead, but its shell is made of the cleaved product of gene 23 (gp23*). It contains internal matter, most likely the processed core proteins, which is lost or modified by experimental manipulations. It accumulates, together with partially filled ("grizzled") heads, in T4 infected cells that are treated with 9-aminoacridine. On sections of "well-preserved" cells the epsilon-particles are not identifiable with certainty; a more or less empty breakdown product of them becomes visible when cytoplasmic leakage is induced. The number of particles per cell is then in agreement with the biochemically and with the number of particles counted in lysates. Morphologically and biochemically, the isolated epsilon-particles closely resemble the empty small particles of 17- -infected cells described in previous papers of this series. Both are composed of gp23* and are still unexpanded, so that they are not yet able to bind the minor head proteins soc and hoc. We discuss the possibility of the epsilon-particle being an intermediate on the normal T4 wild-type head maturation pathway.  相似文献   

9.
The process of bacteriophage T4 morphogenesis was studied using a heat leakage scanning calorimeter. Thermograms of defective mutant 49 (am NG727) in permissive and non-permissive cells of Escherichia coli showed a difference in thermal properties between packaged and non-packaged DNA molecules. In vivo, non-packaged DNA carried out their thermal transition at 85°C, the same temperature as that of T4 DNA melting measured in the standard saline citrate buffer, while the packaged DNA gave a sharper peak at 87°C due to some interaction with the head shell structure. Empty head shells showed a sharp heat absorption peak at 89°C both in vivo and in vitro, indicating the high degree of cooperativity in their conformational changes.  相似文献   

10.
The genome of bacteriophage T4.   总被引:38,自引:3,他引:35       下载免费PDF全文
  相似文献   

11.
Upon treatment with LTMP, 5'-O-protected D4T undergoes deprotonation of the vinylic proton (H-3' or H-2'): when 5'-O-silyl derivative was used, the 3'-C-silylated product was formed as a result of C3'-lithiation and subsequent O-->C silyl migration, while deprotonation at the 2'-position led to the formation of an allene derivative. A stannyl version of this reaction was also examined to develop a method for C3'-functionalization of D4T.  相似文献   

12.
UV-induced mutation in bacteriophage T4.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two late gene am mutants of bacteriophage T4 that can be induced to revert by UV were crossed to a temperature-sensitive ligase mutant. In the double mutants, UV-induced reversion was eliminated at a semirestrictive temperature. When the single am mutants were irradiated and then allowed a single passage in a permissive host, the UV-induced reversion frequency was increased by 15- to 25-fold. This increased mutagenesis was also abolished by the presence of the ligase allele. When the UV-irradiated single am mutants multiply infected a permissive host, allowing multiplicity reactivation to occur, the induced reversion frequency was reduced similarly to the reduction in lethality. The mutagenesis that remained was again abolished by the presence of the ligase allele. It is concluded that UV induces mutations in phage T4 through the action of a pathway that includes polynucleotide ligase. The increase in mutation frequency after growth in a permissive host implies that mutagenesis can occur at more than one stage of the infection rather than only in an early stage before expression of the mutant genome. The process of multiplicity reactivation appears to be error-free since it overcomes lethal lesions without inducing new mutations.  相似文献   

13.
14.
F Seela  C Wei    A Melenewski 《Nucleic acids research》1996,24(24):4940-4945
The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4).  相似文献   

15.
The bacteriophage T4 41 and 61 proteins function as a primase-helicase which in vitro both unwinds double-stranded DNA and synthesizes the pentaribonucleotides used to initiate DNA synthesis on the lagging strand. We demonstrate that 61 protein alone possesses a weak DNA template-dependent oligomer synthesizing activity, whose products differ in size and nucleotide specificity from those made by the 61 and 41 proteins together. We have previously shown that the 61 and 41 proteins make primarily ribonucleotide pentamers of the sequence pppApC(pN)3, although some pentamers beginning with G were also detected on phi X174 single-stranded DNA. The pentamers pppApC(pN)3 have also been shown to initiate T4 DNA chains in vivo (Kurosawa, Y., and Okazaki, T. (1979) J. Mol. Biol. 135, 841-861). We now show that in contrast, the major products made by 61 protein alone on phi X174 DNA with [alpha-32P]CTP and the other three ribonucleoside triphosphates are not pentamers, but the dimers pppApC and pppGpC. In addition, minor amounts of products from 3 to approximately 45 nucleotides in length are also synthesized. Unlike the 61/41 protein reaction, 61 protein alone can substitute dATP or dGTP for ATP or GTP. Addition of 41 protein greatly stimulates oligomer synthesis, especially the synthesis of products made with ATP and CTP and products 5 nucleotides in length. Thus, both 61 and 41 proteins are needed to obtain efficient synthesis of the biologically relevant pentamers pppApC(pN)3. We demonstrate that the glucosylated hydroxymethylcytosines present in T4 DNA do not support the initiation of primer synthesis by the 61 protein on this template. With glycosylated hydroxymethyl T4 DNA, pppApC but not pppGpC oligomers are detected. If the T4 DNA is modified by hydroxymethylation but not glucosylation, pppApC and only a trace of pppGpC products are seen. In the accompanying paper (Nossal, N.G., and Hinton, D.M. (1987) J. Biol. Chem. 262, 10879-10885), we examine DNA synthesis primed by 61 protein in the absence of 41 protein.  相似文献   

16.
17.
E S Piruzian 《Genetika》1975,11(7):121-127
In studying intergenic and intragenic complementation in amber mutants in genes of phage T4 controlling the synthesis of phage tail fibres the data have been obtained indicating the dependency of the results of complementation tests on those of crosses of respective markers. The results obtained show that in complementation of amber mutants of phage T4 the phage yield varies widely and depends on the location of markers on the phage genetic map.  相似文献   

18.
To investigate the influence of chronic ethanol consumption on circulating thyroid hormone levels, male and female rats were given 20% ethanol as the only drinking solution daily for 8 weeks. Blood ethanol levels ranged 30–45 mg/L. In male rats serum T4 decreased from the initial mean ± SD value of 5.2±1.4 to3.0 ±0.7 μg/dl; T3 decreased from initial value of 97±14 to 66±11 ng/dl and rT3 decreased from initial value of 19±9 to 10±1 ng/dl after 8 weeks of ethanol ingestion. Under similar experimental conditions, female rats showed a significant decrease in serum T4 and rT3 levels; however, T3 levels decreased slightly but not significantly as compared to initial values. The results indicate adverse effect of chronic ethanol intake on serum thyroid hormone levels in rats.  相似文献   

19.
The mechanism by which the type 2 topoisomerase from bacteriophage T4 mediates knotting of negatively supercoiled DNA was deduced from an analysis of product topology. The knotted products were nicked and then subjected to electrophoresis in order to separate species on the basis of the minimum number of crossings in the knotted form. Knots with defined numbers of crossings were purified and the configuration of these crossings determined in the electron microscope by the RecA coating method. The product knots were exclusively of the twist form, in which an interwound region is entrapped by a single interlock of two looped ends. The interwound region was of negative sign in greater than 98% of the molecules examined, whereas the single interlock was equally likely to be positive or negative. These results are interpreted in terms of a model for knot formation in which random strand passage mediated by the topoisomerase links bent or branched portions of a superhelix that has a specific interwound geometry. Superhelix interwinding and DNA contacts stabilized by excess enzyme molecules explain the very high frequency of knotting.  相似文献   

20.
Atomic coordinates are presented for the lysozyme from T4 bacteriophage. The coordinates were derived from a 2.4 Å resolution electron density map based on two isomorphous heavy-atom derivatives, interpreted in terms of the known amino acid sequence, and adjusted to have stereochemically acceptable bond lengths and angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号