首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calf spleen profilin is shown to be an in vitro substrate of purified human placental protein kinase C (PKC), with an apparent Km of 4 microM. Phosphatidylinositol bisphosphate (PIP2) was an effective activator of the profilin phosphorylation by PKC and caused a maximum 13-fold increase of Vmax with a half maximal effect at 40 micrograms/ml. The action of PIP2 was not mimicked by phosphatidylserine, phosphatidic acid or phosphatidylinositol, whereas phosphatidylinositol monophosphate was slightly stimulatory. By contrast, protein kinase C-dependent phosphorylation of histone type III-S, myelin basic protein or lipocortin-I was not affected by PIP. It is suggested that PIP2 modifies the nature of the profilin-PKC interactions.  相似文献   

2.
A phosphatidylinositol-4-phosphate (PIP) kinase activity was purified from rat brain extract through several chromatographic steps to yield an active preparation (specific activity 1 mumol of 32P incorporated into phosphatidylinositol 4,5-bisphosphate/min per mg of protein) with an apparent molecular size of 100-110 kDa in the native form. The isolated PIP kinase required Mg2+ (optimally 20-30 mM) for its activity and was not influenced by Ca2+. The enzyme used ATP (Km 25 microM) and GTP (Km 133 microM) as phosphate sources and appeared specific for PIP (Km 3.3 micrograms/ml) as the lipid substrate. The PIP-phosphorylation reaction was inhibited by micromolar concentrations of heparin [ID50 (concn. giving 50% inhibition) 2 micrograms/ml] and the flavonoid quercetin (ID50 0.2 microM). Whereas heparin behaves as a competitive inhibitor to PIP, quercetin was competitive towards ATP (or GTP). Phosphorylation of the preparation by a highly active purified protein kinase C did not detectably alter PIP kinase activity. Whereas 12-O-tetradecanoylphorbol acetate and various phospholipids had no effect, phosphatidylserine elicited a dose-dependent activation of PIP activity. This suggests that a phosphatidylserine-PIP kinase interaction may be considered as a possible regulatory process at the cell-membrane level.  相似文献   

3.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

4.
Phospholipase C from rat liver with a molecular weight of 87,000 (PLC delta) is stimulated by polyamines, basic proteins, and basic polyamino acids. The activation occurs in both the presence and the absence of detergents. Half-maximum activation by spermine is observed at 0.15 mM, with optimum effects between 0.2 and 0.5 mM. Spermine inhibits above 0.5 mM. Half-maximum activation by spermidine and putrescine is observed at 0.9 and 6 mM, respectively, with optimum effects at 2 and 5 mM, respectively. These polyamines also inhibit at higher concentrations. Neomycin activates the enzyme with an optimum concentration of 10 microM, but maximum activation is less than with polyamines. Half-maximum activation by histone 2B occurs at 0.5 micrograms/ml (36 nM), with maximum stimulation at 1.5 micrograms/ml. Other histones, protamine, melittin, poly-L-ornithine, poly-L-lysine, poly-D-lysine, and poly-L-arginine, activate optimally at 3-10 micrograms/ml. Myelin basic protein and lysozyme activate optimally at 50-100 micrograms/ml. Typical activations are three- to eightfold, but under some conditions the enzyme shows little or no activity in the absence of basic activators. The basic activators lower the salt concentration required for maximal activity. In the case of the detergent-micelle assay, histone shifts the optimum NaCl concentration from 350 to 200 mM for PIP2, from 260 to 100 mM for PIP, and from 150 to 0 mM for PI. Histone potentiates the activation by Ca2+, but does not shift the optimum Ca2+ concentration. The optimum salt and Ca2+ concentrations are linked, such that a decrease in the concentration of one decreases the optimum concentration of the other. Activation by histone is diminished by MgCl2 in a concentration-dependent manner.  相似文献   

5.
The cytoplasmic 17 beta-hydroxysteroid dehydrogenase of human placenta, purified more than 2500-fold, was activated by small amounts of human albumin and globulin. This activation was dependent on substrate concentration. At 20 microM estradiol (10 X KM) and two different concentrations of enzyme (0.01 and 2 micrograms/ml), the activation was greatest at albumin or globulin concentrations between 0 and 30 micrograms/ml. At "low" concentrations of estradiol (20 nM = 10(-2) X KM) and enzyme (0.01 microgram/ml), maximal activity occurred at approximately 10 micrograms/ml. Higher concentrations of albumin and globulin led to a decline in activity.  相似文献   

6.
Chemoattractants directly stimulate the enzyme activity that synthesizes phosphatidylinositol-4,5-bisphosphate (PIP2), phosphoinositol-4-monophosphate (PIP) kinase. The present study determined whether stimulation of this enzyme correlates with actin assembly by assessing the calcium dependence of this reaction. Incubation of neutrophils with 5 to 100 micrograms/ml Con A caused a concentration-dependent increase in PIP kinase activity ranging from 1.38- to 3.4-fold. The effective concentration which stimulated PIP kinase by 50% (17 micrograms/ml, EC50) corresponded with the EC50 for Con A-induced superoxide production (32 micrograms/ml). Like chemoattractants, the increase in PIP kinase by Con A was characterized by a 2.6-fold increase in the maximum velocity (Vmax) of the enzyme, and no change in the Km for ATP. The kinetics of FMLP- and Con A-induced filamentous actin formation preceded stimulation of PIP kinase and was sustained over the same time period that this increased enzyme activity was noted. Although transmembrane signaling by FMLP and Con A requires an increase in intracellular calcium for some polymorphonuclear leukocyte (PMN) functional responses, calcium depletion of PMN by incubation with 100 microM Quin 2 A/M and 5 mM EGTA did not prevent the stimulation of PIP kinase by FMLP or Con A. In addition, calcium depletion did not prevent the increase in filamentous actin formation by FMLP and Con A in PMN. These findings demonstrate that Con A increases PIP kinase activity in human PMN and that PIP kinase stimulation and maintenance of actin assembly are independent of calcium fluxes in these cells. Because PIP2 controls the function of the actin-regulatory proteins, profilin and gelsolin, changes in the synthetic rate of PIP2 through regulation of PIP kinase may provide a molecular basis for the prolonged stimulation of actin assembly in human PMN by agonists such as Con A and FMLP.  相似文献   

7.
The effect of both physiological and pharmacological doses of estradiol on exercise performance and tissue glycogen utilization was determined in oophorectomized estradiol-replaced (ER) rats. Doses of beta-estradiol 3-benzoate (0.02, 0.04, 0.1, 0.2, 1, 2, 4, or 10 micrograms.0.1 ml of sunflower oil-1.100 g body wt-1) were injected 5 days/wk for 4 wk. Controls were sham injected (SI). After treatment, the animals were run to exhaustion on a motorized treadmill. ER animals receiving the 0.02-microgram dose ran significantly longer and completed more total work than the SI group. ER animals receiving doses of greater than or equal to 0.04 microgram ran longer and performed more work than the 0.02-microgram group. At exhaustion, myocardial glycogen content was significantly decreased in animals that were ER with less than or equal to 0.1 microgram, whereas those replaced with doses greater than 0.1 microgram utilized significantly less glycogen. With the 10-micrograms dose no significant decrease in heart glycogen content was observed at exhaustion. A submaximal 2-h run significantly reduced glycogen content in heart, red and white portions of the vastus lateralis, and the livers of SI animals. The latter effect was attenuated in skeletal muscle and liver, and there was no effect in the hearts of the ER animals receiving 2 micrograms. These data indicate that estradiol replacement in oophorectomized rats influenced myocardial glycogen utilization during exhaustive exercise and spared tissue glycogen during submaximal exercise. These glycogen sparing effects may have contributed to the significant improvements in exercise performance observed in this study.  相似文献   

8.
The studies have evaluated the effect of methotrexate and vincristine on the release of cobalophilins (vitamin B12 binding proteins) from resting and functionally stimulated polymorphonuclear granulocytes (PMN). Methotrexate (2.5 micrograms/ml; 5.0 micrograms/ml; 20.0 micrograms/ml; and 50.0 micrograms/ml) and vincristine (0.3 microgram/ml; 0.6 microgram/ml; 2.4 micrograms/ml; and 6.0 micrograms/ml) inhibited the cobalophilins release from resting granulocytes. This effect increased with growing concentrations of these drugs. Stimulated PMN could be shown to release cobalophilins more actively than resting granulocytes. Methotrexate (2.5 micrograms/ml; 5.0 micrograms/ml and 20.0 micrograms/ml) and vincristine (0.3 microgram/ml; 0.6 microgram/ml and 2.4 micrograms/ml) inhibited the phagocytosis-activated release of cobalophilins irrespective of the time of PMN stimulation, i.e. before or after being incubated with latex particles.  相似文献   

9.
A soluble phospholipase C from rat liver was purified to homogeneity using phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate. After ammonium sulfate fractionation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose CL-6B, hydroxylapatite, Reactive Blue 2 dye-linked agarose, and Mono S cation exchanger. Under the conditions of the assay, the pure enzyme had a specific activity of 407 mumol/mg protein/min. It migrated as a single band with a molecular mass of 87 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The water-soluble product formed during the hydrolysis of PIP2 by the purified enzyme was inositol 1,4,5-trisphosphate. The enzyme shows one-half of maximum velocity at 2 microM Ca2+ with PIP2 as substrate. Between 0 and 100 microM Ca2+, the enzyme shows approximately the same activity with phosphatidylinositol 4-phosphate (PIP) as it does with PIP2, and very low activity with phosphatidylinositol. The enzyme is activated by low concentrations of basic proteins; for example, with PIP2 as substrate, 1 microgram/ml histone activates the enzyme 3.6-fold. The enzyme shows an almost absolute requirement for monovalent salts which can be met by different alkali metal halides. A second, minor peak of PIP2-hydrolyzing phospholipase C activity was resolved during chromatography of the enzyme on hydroxylapatite. The substrate specificity suggests that PIP and PIP2 are normal substrates of this enzyme. Under physiological conditions of activation, the enzyme may therefore generate inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate in amounts determined by the ratio of PIP and PIP2 present in the cellular membranes.  相似文献   

10.
A multisubstrate Ca2+ and cyclic nucleotide independent kinase (Mr = 47,000) was purified from bovine aortic smooth muscle. Phosphorylation of glycogen synthase by this enzyme was polycation modulable. Low concentrations of polylysine (0.04-0.16 microM) stimulated phosphorylation 2-7 fold, whereas higher concentrations suppressed phosphorylation. Glycogen synthase converted to its glucose 6-PO4 dependent form following phosphorylation in either the presence (7 mol 32P/mol synthase) or absence (4 mol 32P/mol synthase) of polylysine: extent of conversion correlated to extent of phosphorylation. Seven of 14 potential substrates tested were phosphorylated: kinase activity was greatest for phosvitin followed by casein, the receptor protein from type 2 cAMP-kinase, histone H2b, phosphorylase kinase, glycogen synthase, and myocardial myosin light chains. Phosphorylation of phosvitin or synthase was inhibited by heparin (1/2 maximally by 0.5 microgram/ml without salt and 37 micrograms/ml with 150 mM NaCl). The results suggest that the enzyme may participate in regulating arterial glycogen metabolism and that such regulation may be modulated by polycationic and polyanionic effectors.  相似文献   

11.
Trypsin causes rapid activation of intact platelets that mimics many actions of thrombin, including the stimulation of phospholipase C (PLC). We have examined the effects of thrombin and trypsin on PLC in a platelet membrane preparation using exogenous [3H]-phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate. Trypsin induced PIP2 breakdown, which was maximal at 20 micrograms/ml, but was reduced at higher concentrations. alpha- and gamma-Thrombins also stimulated PLC-induced hydrolysis of PIP2 in membranes. This effect was inhibited by leupeptin. Exogenous [3H]phosphatidylinositol 4-monophosphate (PIP) was hydrolyzed in response to both thrombin and trypsin in the same ratio as PIP2. Activation of membrane-bound PLC persisted after removal of thrombin and trypsin. The hydrolysis of [3H]phosphatidylinositol was not activated by alpha-thrombin and trypsin. We examined the question of whether calpain was involved in the observed PLC activation by thrombin and trypsin. Although dibucaine activated a Ca2(+)-dependent protease as judged by the hydrolysis of actin-binding protein and by the activation of phosphoprotein phosphatases, it failed to stimulate the generation of phosphatidic acid in 32P-prelabeled platelets. Moreover, when PLC was assayed in the membranes, the addition of Ca2(+)-activated neutral proteinases did not increase the rate of hydrolysis of either PIP or PIP2. Our results show that proteases such as trypsin and thrombin are able to stimulate membrane-bound PLC, but this activation does not seem to be related to calpain.  相似文献   

12.
Eight anti-coccidial drugs were examined for their efficacies in preventing development of Neospora caninum in bovine monocyte cell cultures. Lasalocid sodium (0.05 microgram/ml), monensin sodium (0.05 microgram/ml), piritrexim (0.01 microgram/ml), pyrimethamine (0.05 microgram/ml), and trimethoprim (5.0 micrograms/ml) were effective in preventing development of intracellular N. caninum tachyzoites (P less than 0.05). No differences (P greater than 0.05) in mean numbers of infected cells compared to controls were observed in cultures treated with amprolium hydrochloride (10.0 micrograms/ml), sulfadiazine (200.0 micrograms/ml), and sulfamethoxazole (200.0 micrograms/ml).  相似文献   

13.
Mitoxantrone, a new anthraquinone, showed inhibitory an effect on protein kinase C (PKC) activity. Its IC50 value was 4.4 micrograms/ml (8.5 microM), which is much lower than those of the well-known anthracyclines daunorubicin and doxorubicin, the IC50 values of which are more than 100 micrograms/ml (> 170 microM). Kinetic studies demonstrated that mitoxantrone inhibited PKC in a competitive manner with respect to histone H1, and its Ki value was 6.3 microM (Ki values of daunorubicin and doxorubicin were 0.89 and 0.15 mM, respectively), and in a non-competitive manner with respect to phosphatidylserine and ATP. Inhibition of phosphorylation by mitoxantrone was observed with various substrates including S6 peptide, myelin basic protein and its peptide substrate derived from the amino-terminal region. Their IC50 values were 0.49 microgram/ml (0.95 microM), 1.8 micrograms/ml (3.5 microM), and 0.82 microgram/ml (1.6 microM), respectively. Mitoxantrone did not markedly inhibit the activity of cyclic AMP-dependent protein kinase, casein kinase I or casein kinase II, at concentrations of less than 10 micrograms/ml. On the other hand, brief exposure (5 min) of HL60 cells to mitoxantrone caused the inhibition of cell growth with an IC50 value of 52 ng/ml (0.1 microM). In HL60 cells, most of the PKC activity (about 90%) was detected in the cytosolic fraction. When HL60 cells exposed to 10 micrograms/ml mitoxantrone for 5 min were observed with fluorescence microscopy, the fluorescence elicited from mitoxantrone was detected in the extranuclear area. These results indicated that mitoxantrone is a potent inhibitor of PKC, and this inhibition may be one of the mechanisms of antitumor activity of mitoxantrone.  相似文献   

14.
Platelet-derived growth factor (PDGF) is known to inhibit collagen-induced platelet aggregation. Collagen-induced binding of 125I-PDGF to human washed platelets was therefore investigated. It was found 1) to be time-dependent, reaching a plateau at 20 degrees C after 30 min, 2) collagen concentration-dependent, 3) specifically inhibited by unlabeled PDGF, and 4) saturable. Scatchard plot analysis showed a single class of sites with 3000 +/- 450 molecules bound/cell and an apparent KD of 1.2 +/- 0.2 10(-8) M. The effects of PDGF on collagen-induced phosphoinositide breakdown and protein phosphorylation were also investigated. At 50 ng/ml PDGF, a concentration which completely inhibited collagen-induced aggregation, the breakdown of [32P]phosphatidylinositol 4,5-biphosphate (PIP2) and [32P]phosphatidylinositol 4-phosphate (PIP) was observed, but the subsequent replenishment of [32P]PIP2 was inhibited. The same PDGF concentration totally inhibited collagen-induced phosphatidic acid formation. PDGF also completely prevented phosphorylation of P43 and P20, as a result of protein kinase C activation consecutive to phosphoinositide metabolism. These results suggest that (i) a specific PDGF receptor can be induced by collagen, and (ii) PDGF can effect the early events of collagen-induced platelet activation by inhibiting PIP2 resynthesis and P43 and P20 phosphorylation. It is concluded that PDGF might be involved in a negative feed-back control of platelet activation.  相似文献   

15.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

16.
The effect of Indian red scorpion (Mesobuthus tamulus concanesis, Pocock; MBT) venom was investigated on isolated rat right atrial preparations. MBT venom (0.001-3.0 micrograms/ml) exhibited a peculiar concentration-response pattern with respect to rate. The venom concentrations between 0.001-0.01 microgram/ml increased the atrial rate (phase I), followed by a relative decrease with 0.03-0.3 microgram/ml (phase II), and then an abrupt increase with 0.6-3.0 micrograms/ml (phase III). On the other hand, the force was unaltered by venom at phases I and II, while an increase was seen at phase III (3.0 micrograms/ml). Propranolol (0.1 microM) completely blocked the cardiostimulant action of venom at phase III. Further, this stimulant action of venom was absent in atria obtained from reserpinized animals. Pretreatment with atropine (0.3 microM), produced tachycardia at concentrations 0.1-0.3 microgram/ml of venom. But, hexamethonium (30 microM) had no influence on the venom (0.1 microgram/ml)-induced alterations in rate. However, MBT venom increased the acetylcholinesterase (AChE) activity (2-3 fold) in a concentration-dependent manner. Tetrodotoxin (2 microM), did not block the increase in rate produced by 0.01 microgram/ml of venom. Results suggest that, MBT venom-induced alterations of cardiac rhythmicity are mediated through cholinergic as well as adrenergic mechanisms depending upon the concentrations. The modulation of atrial rate at very low concentrations may be due to the direct action of venom on the atrium.  相似文献   

17.
Antimicrobial susceptibilities of sixty-five non-oral Streptococcus milleri group clinical isolates to penicillin, gentamicin, lincomycin, ampicillin, chloramphenicol, tetracycline and erythromycin were determined by an agar dilution method. All strains were penicillin-sensitive (MIC < or = 0.031 microgram/ml) and the majority (64/65) were susceptible to erythromycin (MIC < or = 0.125 microgram/ml). Low-level resistance to gentamicin was observed, and the majority of strains possessed an MIC of 8 micrograms/ml. Lincomycin and ampicillin at 0.5 microgram/ml inhibited 52/65 and 61/65 strains, respectively. Of the isolates 92% were inhibited by chloramphenicol at < or = 2 micrograms/ml. Twenty-two S. milleri group strains (of which thirteen were vaginal isolates) were resistant to tetracycline (MIC > or = 8 micrograms/ml).  相似文献   

18.
Calcium/phosphatidylserine-dependent protein kinase C (PKC) is activated by phosphatidylinositol 4,5-bisphosphate (PIP2), as well as by diacylglycerol (DG) and phorbol esters. Here we report that PIP2, like DG, increases the affinity of PKC for Ca2+, and causes Ca(2+)-dependent translocation of the enzyme from the soluble to a particulate fraction (liposomes). Phosphatidylinositol 4-phosphate (PIP) also displaces phorbol ester from PKC and causes Ca(2+)-dependent translocation of the enzyme to liposomes, but is much less efficient than PIP2, and a much weaker activator, with a histone phosphorylation v(PIP)/v(PIP2) of approximately 0.15. Scatchard analysis indicates competitive inhibition between PIP and phorbol ester with Ki(PIP) = 0.26 mol% as compared with Ki(PIP2) = 0.043 mol%. No effect of phosphatidylinositol (PI) on phorbol ester binding to PKC, translocation of PKC, or activation of PKC was observed. These results suggest that both PIP and PIP2 can complex with PKC, but full activation of the enzyme takes place only when PIP is converted to PIP2. We suggest that an inositide interconversion shuttle has a role in the regulation of protein phosphorylation.  相似文献   

19.
An enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) is elicited during neuronal growth cone remodeling and requires the maintenance of agonist-sensitive pools of phosphatidylinositol 4,5-bisphosphate (PIP2). Rho family GTPases are putative regulators of both PIP2 synthesis and growth cone remodeling, including neurite outgrowth elicited by muscarinic cholinergic receptor (mAChR) stimulation. In this study, we investigated the interrelationships among Rho family GTPases, PIP2 synthesis, and mAChR signaling to FAK in SH-SY5Y neuroblastoma cells. Preincubation with Clostridium difficile toxin B (Tox B), an inhibitor of Rho, Rac, and Cdc42, attenuated mAChR-stimulated FAK and paxillin tyrosine phosphorylation and lysophosphatidic acid (LPA)-induced FAK phosphorylation to a similar extent (75% decreases at 200 pg/ml Tox B) but did not affect mitogen-activated protein kinase activation elicited by either phorbol ester or an mAChR agonist. In contrast, preincubation with selective inhibitors of either Rho (C3 exoenzyme) or Rho kinase (HA-1 077) resulted in 80-90% reductions in LPA-induced FAK phosphorylation but only 40-50% decreases in mAChR-stimulated phosphorylation. Moreover, mAChR-mediated FAK phosphorylation was significantly attenuated in cells scrape-loaded with dominant-negative N17Cdc42 but not N17Rac1. Tox B had little or no effect on agonist-sensitive pools of PIP2 but inhibited mAChR-driven actin cytoskeletal remodeling. The results suggest that the Rho family GTPases, Rho and Cdc42, link mAChR stimulation to increases in FAK phosphorylation independently of effects on PIP2 synthesis.  相似文献   

20.
Cholera toxin has been used as a tool to study the effects of cAMP on the activation of B cells but may have effects independent of its ability to elevate cAMP. We found five lines of evidence which suggested that cholera toxin suppressed mitogen-stimulated B cell activation through a cAMP-independent pathway. 1) Cholera toxin (1 microgram/ml) was consistently more suppressive than forskolin (100 microM) despite the induction of higher intracellular cAMP levels by forskolin. 2) Cholera toxin was more suppressive at 1 microgram/ml than at 0.1 microgram/ml despite equivalent elevations of cAMP. 3) Washing B cells following their incubation with cholera toxin reversed much of the inhibition without altering intracellular cAMP levels. 4) The A subunit of cholera toxin, which at high concentrations (10 micrograms/ml) induced levels of cAMP comparable to those induced by cholera toxin (1 and 0.1 microgram/ml), did not inhibit B cell activation. 5) cAMP derivatives at high concentrations were much less effective than was cholera toxin in suppressing B cell activation. Although the elevation of cAMP may cause a mild inhibition of B cell proliferation, we found that even a marked elevation of cAMP did not suppress B cell proliferation, unless the elevation was persistent. We did, however, observe that the degree of toxin inhibition more closely paralleled binding of the toxin to B cells than toxin stimulation of cAMP. This result raised the possibility that binding of cholera toxin to its ganglioside GM1 receptor mediated an inhibitory signal which suppressed B cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号