首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

2.
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.  相似文献   

3.
The aim of the present work was to study the sexual differences in secretory mechanisms and intracellular calcium ion dynamics in the Harderian gland of the golden hamster. In both sexes the Harderian gland consisted of small and large lobes. In the intact control male glands the secretory portions of both lobes showed wide lumina that contained secretory material and cytoplasmic fragments, suggestive of the occurrence of exocytosis and apocrine secretion. After perfusion with HEPES-buffered Ringer's solution containing 10 microM carbamylcholine (CCh), the glandular cells showed features of enhanced secretion and a rise in intracellular calcium concentration ([Ca2+]i). In the intact control female gland the lumina of most secretory portions in the large lobe contained porphyrin accretions, and exocytosis was the sole secretory mechanism. Stimulation of the large lobe with 10 microM CCh did not raise [Ca2+]i or cause enhanced secretion. The small lobe in females resembled the male gland in secretory functions, and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration in males abolished apocrine secretion; exocytosis became the sole secretory mechanism, and stimulation of the glandular cells with CCh did not cause enhanced secretion or induce a rise in [Ca2+]i. To the contrary, in females, castration restored apocrine secretion and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration did not affect the secretory mechanisms and the effect of CCh on the glandular cells in the small lobes of both male and female glands. The present study points to the possibility that sex hormones may control the functioning or expression of muscarinic receptors in the Harderian gland of the golden hamster.  相似文献   

4.
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.  相似文献   

5.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

6.
Ca(+) stores may regulate multiple components of the secretory pathway. We examined the roles of biochemically independent intracellular Ca(2+) stores on acute and long-term growth hormone (GH) release, storage, and mRNA levels in goldfish somatotropes. Thapsigargin-evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) signal amplitude was similar to the Ca(2+)-mobilizing agonist gonadotropin-releasing hormone, but thapsigargin (2 microM) did not acutely increase GH release, suggesting uncoupling between [Ca(2+)](i) and exocytosis. However, 2 microM thapsigargin affected long-term secretory function. Thapsigargin-treated cells displayed a steady secretion of GH (2, 12, and 24 h), which decreased GH content (12 and 24 h), but not GH mRNA/production (24 h). In contrast to the results with thapsigargin, activating the ryanodine (Ry) receptor (RyR) with 1 nM Ry transiently increased GH release (2 h). Prolonged activation of RyR (24 h) reduced GH release, contents and apparent production, without changing GH mRNA levels. Inhibiting RyR with 10 microM Ry increased GH mRNA levels, production, and storage (2 h). Increasing [Ca(2+)](i) independently of Ca(2+) stores with the use of 30 mM KCl decreased GH mRNA. Collectively, these results suggest that parts of the secretory pathway can be controlled independently by function-specific Ca(2+) stores.  相似文献   

7.
Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin.  相似文献   

8.
Ca(2+)mobilization induced by ATP, isoproterenol and the Ca(2+)-ATPase inhibitor thapsigargin in the human submandibular duct cell line A253 was investigated using the Ca(2+)-sensitive fluorescent indicator fura-2. ATP and isoproterenol increased cytosolic free Ca(2+)([Ca(2+)](i)) and subsequent exposure to thapsigargin after ATP or isoproterenol stimulation caused a further increase in [Ca(2+)](i). However, ATP and isoproterenol were not able to elicit a further increase in [Ca(2+)](i)after exposure of the cells to thapsigargin. Relatively few cells reacted to isoproterenol stimulation, but nearly all cells reacted to isoproterenol if ATP was added together with, or prior to isoproterenol stimulation. Moreover, the effect of ATP was potentiated by prior or simultaneous addition of isoproterenol. Furthermore, ATP decreased [Ca(2+)](i)in the presence of thapsigargin probably due to agonist-induced export of intracellular calcium. The results may suggest the existence of three thapsigargin sensitive pools; one opened by ATP acting through P(2)-purinergic receptors and IP(3), one opened by isoproterenol acting through beta2-adrenergic receptors, and a third pool not sensitive to ATP or isoproterenol.  相似文献   

9.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

10.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

11.
We have previously shown that store-associated microdomains of high Ca(2+) are not essential for exocytosis in RBL-2H3 mucosal mast cells. We have now examined whether Ca(2+) microdomains near the plasma membrane are required, by comparing the secretory responses seen when Ca(2+) influx was elicited by two very different mechanisms. In the first, antigen was used to activate the Ca(2+) release-activated Ca(2+) (CRAC) current (I(CRAC)) through CRAC channels. In the second, a Ca(2+) ionophore was used to transport Ca(2+) randomly across the plasma membrane. Since store depletion by Ca(2+) ionophore will also activate I(CRAC), different means of inhibiting I(CRAC) before ionophore addition were used. Ca(2+) responses and secretion in individual cells were compared using simultaneous indo-1 microfluorometry and constant potential amperometry. Secretion still takes place when the increase in intracellular Ca(2+) occurs diffusely via the Ca(2+) ionophore, and at an average intracellular Ca(2)+ concentration that is no greater than that observed when Ca(2+) entry via CRAC channels triggers secretion. Our results suggest that microdomains of high Ca(2+) near the plasma membrane, or associated with mitochondria or Ca(2+) stores, are not required for secretion. Therefore, we conclude that modest global increases in intracellular Ca(2+) are sufficient for exocytosis in these nonexcitable cells.  相似文献   

12.
Activation of muscarinic acetylcholine receptors (mAChRs) causes the rapid release of Ca2+ from intracellular stores and a sustained influx of external Ca2+ in PC12D cells, a subline of the widely studied cell line PC12. Release of Ca2+ from intracellular stores and a sustained influx of Ca2+ are also observed following exposure to thapsigargin, a sesquiterpene lactone that depletes intracellular Ca2+ pools by irreversibly inhibiting the Ca2+ pump of the endoplasmic reticulum. In this study, we show that carbachol and thapsigargin empty the same intracellular Ca2+ stores, and that these stores are a subset of intracellular stores depleted by the Ca2+ ionophore ionomycin. Intracellular Ca2+ stores remain depleted during continuous stimulation of mAChR with carbachol in medium containing 2 mM extracellular Ca2+, but rapidly refill following inhibition of mAChRs with atropine. Addition of atropine to carbachol-stimulated cells causes intracellular Ca2+ levels to return to baseline levels in two steps: a rapid decrease that correlates with the reuptake of Ca2+ into internal stores and a delayed decrease that correlates with the inhibition of a Mn2+-permeable Ca2+ channel. Several lines of evidence suggest that carbachol and thapsigargin stimulate Ca2+ influx by a common mechanism: (i) pretreatment with thapsigargin occludes atropine-mediated inhibition of Ca2+ influx, (ii) carbachol and thapsigargin applied individually or together are equally efficient at stimulating the influx of Mn2+, and (iii) identical rates of Ca2+ influx are observed when Ca2+ is added to cells pretreated with carbachol, thapsigargin, or both agents in the absence of extracellular Ca2+. Taken together, these data suggest that the sustained influx of extracellular Ca2+ observed following activation of mAChRs in PC12D cells is mediated primarily by activation of a Mn2+-permeable, Ca2+ store-operated Ca2+ channel.  相似文献   

13.
Lukyanets  I. A.  Yavorskaya  E. N.  Tokar'  S. L.  Lukyanetz  E. A. 《Neurophysiology》2002,34(2-3):177-179
Steroid hormones participate in various metabolic processes, and dysfunction of the adrenocortical system leads to numerous pathologies in humans. One of the factors that can influence the secretory properties of adrenocorticocytes is changes in the cell volume observed during osmotic shock. In our study, we tested the hypothesis that osmotic stress modifies intracellular Ca2+ signalling and in such a way can influence the secretion of steroids by adrenocorticocytes. The effects of hyperosmotic stress on the cytosolic Ca2+ concentration ([Ca] i ) in cultured adrenocortical cells from the zona fasciculata of the rat adrenals were investigated using the indicator fura-2 technique. Our experiments have shown that exposure of the cells to a hyperosmotic solution caused a decrease in the cell volume, as well as a reversible rise in the [Ca] i . Calcium-free media partly eliminated [Ca] i responses. Pretreatment of the cells with thapsigargin or CCCP (blockers of internal calcium stores) significantly decreased the magnitude of responses induced by osmotic stress. These findings indicate that osmotic shock causes an increase in the [Ca] i in adrenocortical cells, mostly due to depletion of the intracellular stores, and may in such a way stimulate steroidogenesis.  相似文献   

14.
This investigation concentrates on the change in Ca(2+) concentration ([Ca(2+)]) caused by ryanodine in U373 MG cells. This cell type from a human astrocytoma is a unique cellular model because it only expresses the type 3 ryanodine receptor (RyR3), which is generally the least abundant isoform. In the presence of physiological [Ca(2+)] in the extracellular medium, U373 MG cells are caffeine-insensitive, even after forskolin treatment, and ryanodine-sensitive only when an unusually high concentration (30 microM) is applied. Xestospongin C behaves like thapsigargin and therefore cannot be used as a selective antagonist of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). After ryanodine challenge, addition of an analog of Substance P (SP), which should deplete InsP(3)-sensitive stores, has no effect on [Ca(2+)](i). After thapsigargin treatment, which unmasks the calcium leak from intracellular stores, neither ryanodine nor SP change [Ca(2+)](i), suggesting that thapsigargin completely depletes the ryanodine-sensitive and the InsP(3)-sensitive stores of U373 MG cells. Finally, in experiments monitoring the [Ca(2+)] in intracellular stores, InsP(3) stimulation of permeabilized cells causes a decrease in [Ca(2+)] that is not affected by subsequent ryanodine treatment. Our results support the conclusion that U373 MG cells express both InsP(3)Rs and RyRs that can individually or in combination mobilize only one functional Ca(2+) pool.  相似文献   

15.
The immunosuppressant cyclosporin A (CsA) markedly inhibits collagen degradation by an intracellular phagocytic pathway in fibroblasts, an effect that can lead to massive gingival overgrowth. We used a collagen bead model of collagen phagocytosis to determine whether CsA inhibits internalization by blocking efflux of calcium from endoplasmic reticulum (ER) and mitochondrial calcium stores. CsA caused dose-dependent inhibition of phagocytosis of collagen-coated (but not bovine serum albumin-coated) beads. Chelation of intracellular Ca(2+) with BAPTA/AM or inhibition of Ca(2+)-ATPase of ER stores with thapsigargin reduced collagen bead phagocytosis. Measurement of intracellular calcium by ratio fluorometry showed increases in response to collagen-coated beads. Preincubation with CsA or thapsigargin caused a >3-fold decrease in intracellular calcium elevations in response to stimulation with collagen beads. Direct measurements of Ca(2+) in mitochondrial and ER stores showed that CsA only slightly inhibited collagen bead-induced discharge of calcium from mitochondria, but almost completely blocked discharge from ER stores. We reduced the numbers of mitochondria with chronic ethidium bromide treatment to test for the importance of ER/mitochondrial interactions. In these cells, CsA delayed collagen bead-induced calcium discharge from mitochondria. Collectively, these data indicate that CsA inhibits collagen phagocytosis by blocking calcium release from ER stores and may perturb functional interactions between the ER and mitochondria that regulate calcium stores.  相似文献   

16.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

17.
The contribution of intracellular calcium stores to Mannheimia haemolytica leukotoxin (LKT)-induced increase in cytosolic calcium concentration was studied by pharmacologically inhibiting transport of calcium across the plasma and endoplasmic reticulum membranes of bovine neutrophils exposed to LKT. Active intracellular storage of calcium by sarcoplasmic/endoplasmic reticulum calcium ATPase, influx of extracellular calcium across the plasma membrane, and release of stored calcium via inositol triphosphate receptors and ryanodine-sensitive calcium channels were inhibited using thapsigargin, lanthanum chloride, xestospongin C, and magnesium chloride, respectively. Pre-incubation with thapsigargin attenuated the increase in cytosolic calcium concentration produced by LKT, thus confirming the involvement of intracellular calcium stores. Inhibitory effects of lanthanum chloride, xestospongin C, and magnesium chloride indicated that the increase in cytosolic calcium concentration induced by LKT resulted from both influx of calcium across the plasma membrane and release of calcium from intracellular stores.  相似文献   

18.
We have previously reported that dimethylsulfoxide-differentiation of U937 cells induced significant A23187-stimulatable arachidonate mobilization, consistent with characteristics of cytosolic phospholipase A2 (Rzigalinski, B.A. and Rosenthal, M.D. (1994) Biochim. Biophys. Acta 1223, 219–225). The present report demonstrates that differentiated cells attained higher elevations of intracellular free calcium in response to A23187 and thapsigargin, consistent with enhancement of the capacitative calcium influx pathway. Differentiation induced a significant increase in the size of the intracellular calcium stores, as well as in the capacity for store-activated calcium influx. Alterations in the capacitative calcium influx pathway were coupled to differentiation-induced activation of cPLA2 and mobilization of arachidonate in response to thapsigargin and fMLP stimulation. Although cPLA2 activity is often associated with influx of extracellular calcium, arachidonate mobilization in response to thapsigargin or fMLP was not simply a consequence of calcium influx. Assessment of intracellular free calcium elevations during thapsigargin or fMLP-induced stimulation suggest that a low level of arachidonic acid release was initiated upon release of intracellular store calcium. This initial release of arachidonate was unaffected by inhibition of calcium influx with nickel, EGTA, or SKF96365. Arachidonate release was observed when extracellular calcium was replaced with extracellular strontium, suggesting activation of the cytosolic PLA2 rather than secretory PLA2. Inhibition of PLA2 with prostaglandin B oligomer prevented both thapsigargin and fMLP-stimulated influx of extracellular calcium. Furthermore, exogenous free arachidonate stimulated influx of extracellular calcium in differentiated U937 cells. These results suggest that cPLA2-mediated release of free arachidonate may participate in the formation of a calcium influx factor which controls influx of extracellular calcium through store-controlled channels in the plasma membrane.  相似文献   

19.
The effects of various concentrations of thapsigargin, a specific inhibitor of Ca2+-ATPase in the endoplasmic reticulum (ER) membrane, on calcium homeostasis in lymphoidal T cells (Jurkat) were investigated. Preincubation of these cells suspended in nominally calcium-free medium with 0.1 microM thapsigargin resulted in a complete release of Ca2+ from intracellular calcium stores. When the medium was supplemented with 3 mM CaCl2 the cells maintained constantly elevated level of cytosolic Ca2+. However, thapsigargin applied at lower concentration produced only a partial depletion of the stores. For example, in the cells pretreated with 1 nM thapsigargin and suspended in calcium-free medium approximately 75% of the calcium content was released from the intracellular stores. The addition of 3 mM CaCl2 to such cell suspension led to a transient increase in cytosolic calcium concentration, followed by a return to a lower steady-state. This phenomenon, related to the refilling of the ER by Ca2+, allowed to estimate the half-time for the process of cell recovery after activation of store-operated calcium channels. By this approach we have found that carbonyl cyanide m-chlorophenylhydrazone, which has been documented to inhibit calcium entry into Jurkat cells, does not influence the stability of the intracellular signal involved in the activation of store-operated calcium channels.  相似文献   

20.
Muscarinic receptor activation of phosphoinositide phospholipase C (PLC) has been examined in rat cerebellar granule cells under conditions that modify intracellular Ca2+ stores. Exposure of cells to medium devoid of Ca2+ for various times reduced carbachol stimulation of PLC with a substantial loss (88%) seen at 30 min. A progressive recovery of responses was observed following the reexposure of cells to Ca2+-containing medium (1.3 mM). However, these changes did not appear to result exclusively from changes in the cytosolic Ca2+ concentration ([Ca2+]i), which decreased to a lower steady level (approximately 25 nM decrease in 1-3 min after extracellular omission) and rapidly returned (within 1 min) to control values when extracellular Ca2+ was restored. Only after loading of the intracellular Ca2+ stores through a transient 1-min depolarization of cerebellar granule cells with 40 mM KCl, followed by washing in nondepolarizing buffer, was carbachol able to mobilize intracellular Ca2+. However, the same treatment resulted in an 80% enhancement of carbachol activation of PLC. In other experiments, partial depletion of the Ca2+ stores by pretreatment of cells with thapsigargin and caffeine resulted in an inhibition (18 and 52%, respectively) of the PLC response. Furthermore, chelation of cytosolic Ca2+ with BAPTA/AM did not influence muscarinic activation of PLC in either the control or predepolarized cells. These conditions, however, inhibited both the increase in [Ca2+]i and the PLC activation elicited by 40 mM KCl and abolished carbachol-induced intracellular Ca2+ release in predepolarized cells. Overall, these results suggest that muscarinic receptor activation of PLC in cerebellar granule cells can be modulated by changes in the loading state of the Ca2+ stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号