首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
白色念珠菌在不同的生长条件下能发生显著的形态变化 ,这种变化由多种调控因子与信号转导途径所调控。酿酒酵母的G1期细胞周期蛋白Cln1和Cln2参与其形态发生 ,cln1/cln1、cln2 /cln2双缺失株不能形成菌丝。把白色念珠菌基因组文库导入cln1/cln1、cln2 /cln2缺失株 ,筛选能校正菌丝形成缺陷的基因 ,分离得到白色念珠菌中的CaBEM 1基因。从核苷酸序列推导 ,CaBEM1编码一种 6 32个氨基酸的蛋白质 ,氨基酸序列分析表明在其N端有 2个SH3结构域 ,中部有 1个PX结构域 ,C端有 1个PB1结构域 ;CaBem1的氨基酸序列与酿酒酵母的Bem1同源性达 38% ,与裂殖酵母的Scd2同源性达 32 %。在酿酒酵母的缺失株中异源表达CaBEM1,能够部分校正它们在氮源缺乏条件下的菌丝形成缺陷。这种菌丝形成的校正作用绕过MAPK途径和cAMP/PKA途径 ,表明CaBem1在菌丝形成中的作用可能位于这两条信号转导途径的下游  相似文献   

3.
4.
G1 cyclins coordinate environmental conditions with growth and differentiation in many organisms. In the pathogen Candida albicans, differentiation of hyphae is induced by environmental cues but in a cell cycle-independent manner. Intriguingly, repressing the G1 cyclin Cln3p under yeast growth conditions caused yeast cells to arrest in G1, increase in size, and then develop into hyphae and pseudohyphae, which subsequently resumed the cell cycle. Differentiation was dependent on Efg1p, Cph1p, and Ras1p, but absence of Ras1p was also synthetically lethal with repression of CLN3. In contrast, repressing CLN3 in environment-induced hyphae did not inhibit growth or the cell cycle, suggesting that yeast and hyphal cell cycles may be regulated differently. Therefore, absence of a G1 cyclin can activate developmental pathways in C. albicans and uncouple differentiation from the normal environmental controls. The data suggest that the G1 phase of the cell cycle may therefore play a critical role in regulating hyphal and pseudohyphal development in C. albicans.  相似文献   

5.
The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.  相似文献   

6.
Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis.  相似文献   

7.
8.
9.
10.
Growth and form in Candida albicans   总被引:3,自引:0,他引:3  
  相似文献   

11.
12.
13.
Candida albicans grown in dexamethasone (DXM) shows an apparent increase in dry weight. This increase, however, represents an artefact due to entrapment and incorporation of DXM by the yeast. Thus opportunistic infections by C. albicans which are promoted by DXM must be due entirely to effects other than growth enhancement of the organism.  相似文献   

14.
15.
Prokaryotes and lower eukaryotes, such as yeasts, utilize two-component signal transduction pathways to adapt cells to environmental stress and to regulate the expression of genes associated with virulence. One of the central proteins in this type of signaling mechanism is the phosphohistidine intermediate protein Ypd1. Ypd1 is reported to be essential for viability in the model yeast Saccharomyces cerevisiae. We present data here showing that this is not the case for Candida albicans. Disruption of YPD1 causes cells to flocculate and filament constitutively under conditions that favor growth in yeast form. To determine the function of Ypd1 in the Hog1 mitogen-activated protein kinase (MAPK) pathway, we measured phosphorylation of Hog1 MAPK in ypd1Δ/Δ and wild-type strains of C. albicans. Constitutive phosphorylation of Hog1 was observed in the ypd1Δ/Δ strain compared to the wild-type strain. Furthermore, fluorescence microscopy revealed that green fluorescent protein (GFP)-tagged Ypd1 is localized to both the nucleus and the cytoplasm. The subcellular segregation of GFP-tagged Ypd1 hints at an important role(s) of Ypd1 in regulation of Ssk1 (cytosolic) and Skn7 (nuclear) response regulator proteins via phosphorylation in C. albicans. Overall, our findings have profound implications for a mechanistic understanding of two-component signaling pathways in C. albicans, and perhaps in other pathogenic fungi.  相似文献   

16.
17.

Background

The unfolded protein response (UPR) is a eukaryotic signaling pathway, from the endoplasmic reticulum (ER) to the nucleus. Protein misfolding in the ER triggers the UPR. Accumulating evidence links the UPR in diverse aspects of cellular homeostasis. The UPR responds to the overall protein synthesis capacity and metabolic fluxes of the cell. Because the coupling of metabolism with cell division governs when cells start dividing, here we examined the role of UPR signaling in the timing of initiation of cell division and cell cycle progression, in the yeast Saccharomyces cerevisiae.

Methodology/Principal Findings

We report that cells lacking the ER-resident stress sensor Ire1p, which cannot trigger the UPR, nonetheless completed the G1/S transition on time. Furthermore, loss of UPR signaling neither affected the nutrient and growth rate dependence of the G1/S transition, nor the metabolic oscillations that yeast cells display in defined steady-state conditions. Remarkably, however, loss of UPR signaling led to hypersensitivity to genotoxic stress and a ten-fold increase in chromosome loss.

Conclusions/Significance

Taken together, our results strongly suggest that UPR signaling is not necessary for the normal coupling of metabolism with cell division, but it has a role in genome maintenance. These results add to previous work that linked the UPR with cytokinesis in yeast. UPR signaling is conserved in all eukaryotes, and it malfunctions in a variety of diseases, including cancer. Therefore, our findings may be relevant to other systems, including humans.  相似文献   

18.
Serum induces Candida albicans to make a rapid morphological change from the yeast cell form to hyphae. Contrary to the previous reports, we found that serum albumin does not play a critical role in this morphological change. Instead, a filtrate (molecular mass, <1 kDa) devoid of serum albumin induces hyphae. To study genes controlling this response, we have isolated the RAS1 gene from C. albicans by complementation. The Candida Ras1 protein, like Ras1 and Ras2 of Saccharomyces cerevisiae, has a long C-terminal extension. Although RAS1 appears to be the only RAS gene present in the C. albicans genome, strains homozygous for a deletion of RAS1 (ras1-2/ras1-3) are viable. The Candida ras1-2/ras1-3 mutant fails to form germ tubes and hyphae in response to serum or to a serum filtrate but does form pseudohyphae. Moreover, strains expressing the dominant active RAS1(V13) allele manifest enhanced hyphal growth, whereas those expressing a dominant negative RAS1(A16) allele show reduced hyphal growth. These data show that low-molecular-weight molecules in serum induce hyphal differentiation in C. albicans through a Ras-mediated signal transduction pathway.  相似文献   

19.
20.
Oncogenic RAS mutants such as v-Ha-RAS induce cell cycling, in particular the G1 to S transition, by up-regulating cyclin D1 and down-regulating p27, an inhibitor for cyclin-dependent kinases (CDKs). PI-3 kinase appears to be involved in the regulation of both cyclin D1 and p27. In this report, using two distinct inhibitors specific for PAK1-3 (CEP-1347 and WR-PAK18), we present the first evidence indicating that the PIX/Rac/CDC42-dependent Ser/Thr kinases PAK1-3, acting downstream of PI-3 kinase and up-stream of the Raf/MEK/ERKs kinase cascade, is essential for RAS-induced up-regulation of cyclin D1, but not down-regulation of p27. Since these PAK-inhibitors block selectively the malignant growth of RAS transformants, in which PAK1 is constitutively activated, but not normal cell growth, it is suggested that RAS transformants are addicted to the high levels of PAK1 for their malignant entry to S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号