首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity.  相似文献   

2.
Abstract

By screening around 30 commercially available lipases and esterases, two enzymes, C. rugosa lipase and P. fluorescens esterase, were found to posess catalytic activity and enantioselectivity (E?10) for the hydrolysis of 2-chloro-3,3,3-trifluoropropanoic acid (CTFPA) methyl and ethyl ester. Both enzymes were tentatively assigned to be (S)-selective based on the assumption that they have the same stereopreference as in the hydrolysis of methyl 2-chloropropanoate, which is a non-fluorinated analogue of CTFPA. The enzymes were applied in the kinetic resolution of CTFPA ethyl ester and 95% ee of the remaining ester could be achieved at 60% conversion. The crosslinked enzyme aggregate (CLEA) of C. rugosa lipase was found to catalyze enantioselective transesterification (E?40) of CTFPA methyl ester with ethanol. By conducting the transesterification in a 10-mL packed-bed reactor containing CLEA, it was possible to convert racemic CTFPA methyl ester into the mixture of (S)-methyl and (R)-ethyl esters with 82% and 90% ee, respectively, at 4.0 g/L-1/h-1 space-time yield, which decreased to 1.0 g/L-1/h-1 after four repetitive batches.  相似文献   

3.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward enantiomeric glyceride derivatives was kinetically investigated using the monomolecular film technique. Pseudoglycerides such as enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol, enantiomeric 1(3)-alkyl-2-acyl-sn-glycerol, or enantiomeric 1(3)-acyl-2-acylamino-2-deoxy-sn-glycerol were synthesized in order to assess the lipase stereoselectivity during the hydrolysis of either the primary or the secondary ester position of these glycerides analogues. The cleaved acyl moiety was the same in both enantiomers, thereby excluding the possibility of effects occurring due to fatty acid specificity. We observed a porcine pancreatic lipase sn-3 stereoselectivity when using the enantiomeric 1(3)-alkyl-2-acylamino-2-deoxy-sn-glycerol (diglyceride analogue) which contrasted with the lack of stereoselectivity observed when using the enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol (triglyceride analogue). The gastric lipases, in contrast to the pancreatic lipase, preferentially catalyze the hydrolysis of the primary sn-3 ester bond of the enantiomeric monoakyl-diacyl pair tested. From these kinetic data, high hydrolysis rates and no chiral discrimination were observed in the case of rabbit gastric lipase, whereas low rates and a clear chiral discrimination was noticed in the case of human gastric lipase during hydrolysis of the acyl chain from the secondary ester bond of 1(3)-alkyl-2-acyl enantiomers. It is particularly obvious that in the case of human gastric lipase decreasing the lipid packing increases the lipase sn-3 stereopreference during hydrolysis of the primary ester bond of the enantiomeric 2-acylamino derivatives (diglyceride analogue).  相似文献   

4.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.  相似文献   

5.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.  相似文献   

6.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward chemically alike, but sterically nonequivalent ester groups within one single triglyceride molecule was investigated. Lipolysis reactions were carried out on synthetic trioctanoin or triolein, which are homogenous, prochiral triglycerides, chosen as models for physiological lipase substrates. Diglyceride mixtures resulting from lipolysis were derivatized with optically active R-(+)-1-phenylethylisocyanate, to give diastereomeric carbamate mixtures, which were further separated by high performance liquid chromatography. Resolution of diastereomeric carbamates gave enantiomeric excess values, which reflect the lipases stereobias and clearly demonstrate the existence of a stereopreference by both gastric lipases for the sn-3 position. The stereoselectivity of human and rabbit gastric lipases, expressed as the enantiomeric excess percentage, was 54% and 70% for trioctanoin and 74% and 47% for triolein, respectively. The corresponding values with porcine pancreatic lipase were 3% in the case of trioctanoin and 8% in that of triolein. It is worth noting that rabbit gastric lipase, unlike human gastric lipase, became more stereoselective for the triglyceride with shorter acyl chains (trioctanoin). This is one of the most striking catalytic differences observed between these two gastric lipases.  相似文献   

7.
High molar mass random poly(butylene succinate-co-butylene sebacate), P(BS-co-BSe), and poly(butylene succinate-co-butylene adipate), P(BS-co-BA), with different composition, were synthesized and subjected to enzymatic hydrolysis by Lipase from Mucor miehei or from Rhizopus arrhizus. The enzymatic hydrolysis of P(BS-co-BSe)s and P(BS-co-BA)s films produced a mixture of water-soluble monomers and co-oligomers that were separated and identified by on-line high performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Optimization of the HPLC analysis allowed the separation of isobar co-oligomers, differing only for the co-monomers sequence. Oligomers with the same monomer composition and molar mass but different sequence were identified by HPLC/ESI-MS-MS on-line analysis. The results obtained show a preferential hydrolytic cleavage induced by the lipases used. In particular, these enzymes prefer cleaving sebacic ester bonds in P(BS-co-BSe) copolymers, whereas succinic ester bonds appear to be hydrolyzed faster than adipic ester bonds in P(BS-co-BA) copolyesters. 1H NMR analysis further substantiates these findings. The primary products generated by lipase hydrolysis of polyester films underwent further degradation at longer reaction times. The HPLC/ESI-MS analysis of these mixtures at various times provided the first evidence that lipase catalysis is active also in water solution, a hydrophobic effect induced by the aliphatic units of these polyesters.  相似文献   

8.
A new approach in biotechnological processes is to use enzymes modified with polyethylene glycol which has both hydrophilic and hydrophobic properties. The modified enzymes are soluble in organic solvents such as benzene, toluene and chlorinated hydrocarbons and exhibit high enzymic activities in these organic solvents. Modified hydrolytic enzymes catalysed the reverse reaction of hydrolysis in organic solvents: formation of acid—amide bonds by modified chymotrypsin, and ester synthesis and ester exchange reactions by modified lipase. Modified catalase and modified peroxidase efficiently catalyse their respective reactions in organic solvents. The results of this research indicate great potential for applications in the fields of biotechnology and enzymology.  相似文献   

9.
A rigorous kinetic model describing the stepwise triglyceride hydrolysis at the oil–water interface, based on the Ping Pong Bi Bi mechanism using suspended lipase having positional specificity, was constructed. The preference of the enzyme to cleave to the ester bonds at the edge and the center of the glycerol backbone of the substrates (tri-, di- or monoglyceride) was incorporated in the model. This model was applied to the experimental results for triolein hydrolysis using suspended Porcine pancreatic lipase (an sn-1,3 specific lipase) and Candida rugosa lipase (a non-specific lipase) in a biphasic oil–water system under various operating conditions. In order to discuss the model’s advantages, other models that do not consider the positional specificity of the lipase were also applied to our experimental results. The model considering the positional specificity of the lipase gave results which fit better with the experimental data and described the effect of the initial enzyme concentration, the interfacial area, and the initial concentrations of triolein on the entire process of the stepwise triolein hydrolysis. This model also gives a good representation of the rate for cleaving the respective ester bonds of each substrate by each type of lipase.  相似文献   

10.
Pleiss J  Scheib H  Schmid RD 《Biochimie》2000,82(11):1043-1052
Lipases preferably hydrolyze the sn-1 and sn-3 acyl chain of triacylglycerols and sn-2 substituted analogs. Molecular modeling studies of the stereopreference of microbial lipases from Rhizopus oryzae, Rhizomucor miehei, Candida rugosa, and lipase B from Candida antarctica toward the hydrolysis of triacylglycerols and analogs revealed that sterical interactions occurring between the sn-2 substituent and the His gap affect substrate geometry, which can be monitored by a single torsion angle. This torsion angle correlates to the experimentally determined stereopreference and is, therefore, suitable to predict stereopreference by molecular modeling. For a given microbial lipase, stereopreference can be estimated by measuring the distance between the side chains of the His gap residues: a narrow His gap cleft implies sn-3 stereopreference for all investigated substrates; a medium-sized His gap discriminates by flexibility of the substrates: flexible substrates are hydrolyzed in sn-1, while rigid substrates are hydrolyzed in sn-3. A wide open His gap implies sn-1 stereopreference for all substrates. This rule holds for all investigated microbial wild type lipases and mutants.  相似文献   

11.
This report described that a hapten of racemic phosphonate 3 designed as the mimic of the transition state of hydrolysis of naproxen ethyl ester was successfully synthesized from easily available 2-acetyl-6-methoxy-naphthalene 5. Then BALB/C mice were immunized and one of the monoclonal catalytic antibodies, N116-27, which enantioselectively accelerated the hydrolysis of the R-(-)-naproxen ethyl ester was given. The Michaelis-Menton parameter for the catalyzed reaction was K(M)=6.67 mM and k(cat)/k(uncat)=5.8 x 10(4). This enantioselective result was explained by the fact that the R-isomer of rac-hapten was more immunogenic than the S-isomer.  相似文献   

12.
13.
The ability of cholesterol esterase to catalyze the synthesis of cholesterol esters has been considered to be of limited physiological significance because of its bile salt requirements for activity, though detailed kinetic studies have not been reported. This study was performed to determine the taurocholate, pH, and substrate requirements for optimal cholesterol ester synthesis catalyzed by various pancreatic lipolytic enzymes, including the bovine 67- and 72-kDa cholesterol esterases, human 100-kDa cholesterol esterase, and human 52-kDa triglyceride lipase. In contrast to current beliefs, cholesterol esterase exhibits a bile salt independent as well as a bile salt dependent synthetic pathway. For the bovine pancreatic 67- and 72-kDa cholesterol esterases, the bile salt independent pathway is optimal at pH 6.0-6.5 and is stimulated by micromolar concentrations of taurocholate. For the bile salt dependent synthetic reaction for the 67-kDa enzyme, increasing the taurocholate concentration from 0 to 1.0 mM results in a progressive shift in the pH optimum from pH 6.0-6.5 to pH 4.5 or lower. In contrast, cholesterol ester hydrolysis by the 67-, 72-, and 100-kDa enzymes was characterized by pH optima from 5.5 to 6.5 at all taurocholate concentrations. Optimum hydrolytic activity for these three enzyme forms occurred with 10 mM taurocholate. Since hydrolysis is minimal at low taurocholate concentrations, the rate of synthesis actually exceeds hydrolysis when the taurocholate concentration is less than 1.0 mM. The 52-kDa enzyme exhibits very low cholesterol ester synthetic and hydrolytic activities, and for this enzyme both activities are bile salt independent. Thus, our data show that cholesterol esterase has both bile salt independent and bile salt dependent cholesterol ester synthetic activities and that it may catalyze the net synthesis of cholesterol esters under physiological conditions.  相似文献   

14.
The hydrolysis of polyenoic fatty acid ester bonds with pure human colipase-dependent lipase, with carboxyl ester lipase (CEL) and with these enzymes in combination was studied, using [3H]arachidonic- and [14C]linoleic acid-labelled rat chylomicrons as a model substrate. During the hydrolysis with colipase-dependent lipase, the amount of 3H appearing in 1,2-X-diacylglycerol (DG) markedly exceeded that of 14C. When CEL was added in addition this [3H]DG was efficiently hydrolyzed. CEL alone hydrolyzed the triacylglycerol (TG) at a low rate. The hydrolysis pattern with human duodenal content was similar to that seen with colipase-dependent lipase and CEL in combination. Increasing the concentration of taurodeoxycholate (TDC) and taurocholate (TC) or of TDC alone stimulated the hydrolysis of [3H]- and [14C]TG, but increased the accumulation of labelled DG that could act as substrate for CEL. It is suggested that very-long-chain polyenoic fatty acids of DG formed during the action of the colipase-dependent lipase on TG containing these fatty acids may be a physiological substrate for CEL.  相似文献   

15.
Using the classical emulsified system and the monomolecular film technique, we compared several interfacial properties of turkey pancreatic lipase (TPL) and human pancreatic lipase (HPL). TPL, like HPL, presented the interfacial activation phenomenon when vinyl ester was used as substrate. In the absence of colipase and bile salts, using tributyrin emulsion or monomolecular films of dicaprin at low surface pressure, TPL, unlike HPL, hydrolyzes pure tributyrin emulsion as well as dicaprin films maintained at low surface pressures. TPL was also able to hydrolyze triolein emulsion in the absence of any additive and despite the accumulation of long-chain free fatty acids at the interface. The difference of behaviors between TPL and HPL can be explained by the penetration power of each enzyme. The enzyme that presents the maximal pi(c) (TPL) interacts more efficiently with interfaces, and it is not denaturated at high interfacial energy. Turkey pancreatic lipase is more active on rac-dicaprin than HPL; a maximal ratio of 9 was found between the catalytic activities of the two lipases measured at their surface pressure optima (20 mN m(-1)). A kinetic study on the surface pressure dependency, stereospecificity, and regioselectivity of TPL was performed using enantiopure diglyceride (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-dicaprin) that were spread as monomolecular films at the air-water interface. At low surface pressure (15 mN m(-1)), TPL acts preferentially on primary carboxylic ester groups of the diglyceride isomers (1,3-dicaprin), but at high surface pressure (23 mN m(-1)), this enzyme prefers both adjacent ester groups of the diglyceride isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin). HPL prefers adjacent ester groups of the diglyceride isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin). Furthermore, TPL was found to be markedly stereospecific for the sn-1 position of the 1,2-sn-enantiomer of dicaprin at low surface pressure (15 mN m(-1)), while at high surface pressure (23 mN m(-1)), this lipase presents a stereopreference for the sn-3 position of the 2,3-sn-enantiomer of dicaprin. HPL is stereospecific for the sn-1 position of the 1,2-sn-enantiomer of dicaprin both at 15 and 23 mN m(-1).  相似文献   

16.
The lipase of Candida cylindraceae was used to facilitate a combined enzymatic-chemical synthesis of the alkaloid, N-methyllaurotetanine. The basis for this synthesis is the regioselective enzymatic hydrolysis of the acetate ester functional group at the 2-position of diacetylboldine. Optimal esterase conditons for the yeast enzyme were established with p-nitrophenyl acetate as substrate and these were used in the hydrolysis of the alkaloid diacetate. The synthetic pathway described illustrates the value of enzymes as reagents in synthetic organic chemistry.  相似文献   

17.
Candida rugosa lipase was encapsulated within a sol–gel procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of octyltriethoxysilane and tetraethoxysilane in the presence of magnetic sporopollenin. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e., the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of racemic naproxen methyl ester, mandelic acid methyl ester or 2-phenoxypropionic acid methyl ester that were studied in aqueous buffer solution/isooctane reaction system. The encapsulated magnetic sporopollenin (Spo-M-E) was found to give 319 U/g of support with 342% activity yield. It has been observed that the percent activity yields and enantioselectivity of the magnetic sporopollenin encapsulated lipase were higher than that of the encapsulated lipase without support. The substrate specificity of the encapsulated lipase revealed more efficient hydrolysis of the racemic naproxen methyl ester and 2-phenoxypropionic acid methyl ester than racemic mandelic acid methyl ester. It was observed that excellent enantioselectivity (E > 400) was obtained for encapsulated lipase with magnetic sporopollenin with an ee value of S-Naproxen and R-2 phenoxypropionic acid about 98%.  相似文献   

18.
Chylomicron remnants labelled biologically with [3H]cholesterol were efficiently taken up by freshly isolated hepatocytes during a 3 h incubation in Krebs bicarbonate medium. Their [3H]cholesteryl ester was hydrolysed (74% net hydrolysis), and 0.1 mM-chloroquine could partially inhibit this hydrolysis, provided that hepatocytes were first preincubated for 2 h 30 min at 37 degrees C. This hydrolysis was also measured in preincubated cells with remnants double-labelled (3H and 14C) on their free cholesterol moiety; [3H]cholesterol arising from [3H]cholesteryl ester hydrolysis was recovered in the free [3H]cholesterol pool. A dose-response study showed saturation of remnant uptake at 180 micrograms of remnant protein/10(7) cells. Heparin (10 units/ml) increased remnant uptake by 63% (P less than 0.01), [3H]cholesteryl ester accumulation in the cell pellet by 110% (P less than 0.025) and hepatic lipase activity secreted in the medium by 2.4-fold (P less than 0.01) and by 3.3-fold (P less than 0.01) at the end of the preincubation and incubation periods respectively. Addition of 100 munits of semi-purified hepatic lipase preparation/flask stimulated remnant uptake by 44-69%, and [3H]cholesteryl ester accumulation in the presence of chloroquine by 2.1-fold (P less than 0.025). When hepatic lipase was incubated solely with the remnants, it decreased their triacylglycerol and phospholipid contents by 24% and 26% respectively. Thus freshly isolated hepatocytes may be used to study chylomicron-remnant uptake. Hepatic lipase, which seems to underly the stimulating effect of heparin, facilitates remnant uptake in vitro, and this could be mediated by at least one (or both) of its hydrolytic properties.  相似文献   

19.
Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.  相似文献   

20.
Hormone-sensitive lipase (HSL) contributes importantly to the hydrolysis of cholesteryl ester in steroidogenic tissues, releasing the cholesterol required for adrenal steroidogenesis. HSL has broad substrate specificity, because it hydrolyzes triacylglycerols (TAGs), diacylglycerols, monoacylglycerols, and cholesteryl esters. In this study, we developed a specific cholesterol esterase assay using cholesterol oleate (CO) dispersed in phosphatidylcholine and gum arabic by sonication. To continuously monitor the hydrolysis of CO by HSL, we used the pH-stat technique. For the sake of comparison, the hydrolysis of CO dispersion was also tested using other cholesteryl ester-hydrolyzing enzymes. The specific activities measured on CO were found to be 18, 100, 27, and 3 micromol/min/mg for HSL, cholesterol esterase from Pseudomonas species, Candida rugosa lipase-3, and cholesterol esterase from bovine pancreas, respectively. The activity of HSL on CO is approximately 4- to 5-fold higher than on long-chain TAGs. In contrast, with all other enzymes tested, the rates of TAG hydrolysis were higher than those of CO hydrolysis. The relatively higher turnover of HSL on CO observed in vitro adds further molecular insight on the physiological importance of HSL in cholesteryl ester catabolism in vivo. Thus, HSL could be considered more as a cholesteryl ester hydrolase than as a TAG lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号