共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase from Pseudomonas glumae has been purified and crystallized in two forms, using the hanging drop method of vapour diffusion at 4 degrees C and 15 degrees C. Both forms grew at pH 9.0 from 0.1 M-Tris buffer in the presence of 10% (v/v) acetone. Form 1 was crystallized from 27 to 29% polyethylene glycol in the presence of less than 0.5% (v/v) n-dodecyl-beta-D-glucopyranoside. Form 2 was grown from 17 to 19% ammonium sulphate in the presence of 1% n-octyl-beta-D-glucopyranoside. Form 1 is orthorhombic with space group P2(1)2(1)2(1), and cell dimensions of a = 158.1 A, b = 158.6 A, c = 63.4 A, Form 2 is tetragonal with space group P4(1)2(1)2 (or P4(3)2(1)2) and cell dimensions of a = 89.3 A, c = 180.4 A. Form 1 probably has four molecules per asymmetric unit and diffracts to at least 2.5 A. Form 2 has two molecules per asymmetric unit and diffracts to at least 3.0 A. 相似文献
2.
Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. 总被引:3,自引:2,他引:3
下载免费PDF全文

L G Frenken M R Egmond A M Batenburg J W Bos C Visser C T Verrips 《Applied microbiology》1992,58(12):3787-3791
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications. 相似文献
3.
L G Frenken M R Egmond A M Batenburg J W Bos C Visser C T Verrips 《Applied and environmental microbiology》1992,58(12):3787-3791
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications. 相似文献
4.
5.
Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae 总被引:4,自引:0,他引:4
Leon G. J. Frenken Arjan de Groot Jan Tommassen C. Theo Verrips 《Molecular microbiology》1993,9(3):591-599
The LipB protein of Pseudomonas glumae is essential for the production of active extracellular lipase encoded by the lipA gene. When lipase is overproduced in P. glumae in the absence of a functional lipB gene, the enzyme accumulates intracellularly in an inactive conformation. Heterologous expression of the lipase in Pseudomonas aeruginosa, Bacillus subtilis and Escherichia coli indicated that LipB is not directly involved in the trans location of the lipase across the inner or outer membrane. However, the presence of LipB was essential for obtaining active lipase and had a profound influence on the stability of the protein to proteolytic degradation. Inactive iipase, produced in the absence of LipB could be activated in vitro by unfolding and refolding, which demonstrates that LipB activity is not responsible for an essential covalent modification of the enzyme. We propose that LipB is a lipase-specific foldase. Furthermore, proper folding of the lipase in the periplasm appears to be essential for Xcp-mediated translocation across the outer membrane. 相似文献
6.
An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase 总被引:3,自引:1,他引:3
Leon G.J. Frenken J. Wil Bos Chris Visser Wally Müller Jan Tommassen C. Theo Verrips 《Molecular microbiology》1993,9(3):579-589
Pseudomonas glumae PG1 is able to secrete lipase into the extracellular medium. The lipase is produced as a precursor protein, with an N-terminal signal sequence. A second open reading frame (ORF) was found immediately downstream of the lipase structural gene, lip A, a situation found for the lipases of some other Pseudomonas species. Inactivation of this ORF resulted in a lipase-negative phenotype, indicating its importance in the production of active extracellular lipase. The ORF, lipB, potentially encodes a protein of 353-amtno-acid residues, having a hydrophobic N-terminal (amino acids 1 to 90) and a hydrophilic C-terminal part. As a first step in determining the role of LipB, its subcellular location was determined. The protein was found to fractionate with the inner membranes. The expression of fusions of lipB fragments with phoA revealed an Nin–Cout topology for the LipB protein, which was confirmed by protease accessibility studies on EDTA-permeabilized cells and on inverted inner membrane vesicles. These and other results indicate that most of the LipB polypeptide is located in the periplasm and anchored to the inner membrane by an an N-terminal transmembrane helix, located between amino acids 19 and 40. 相似文献
7.
The behavior of cholesteryl esters at the air-buffer interface was studied as a function of molecular area and the presence of noncholesterol-containing lipids (colipids). The data obtained indicate that cholesteryl esters with other than long, saturated acyl groups can be present in surface phases up to packing densities approximately those in natural membranes. Their apparent molecular areas in such phases, which are largely determined by colipid structure, suggest their orientation with the ester function toward the interface. The extent of miscibility in the surface phase is also a strong function of colipid structure. Reversibility of the monolayer to bulk phase transition is determined exclusively by the acyl structure of the cholesteryl ester. Of the esters examined, only those with cis unsaturation collapsed reversibly. Our data predict that cholesteryl esters should be present in small, but finite amounts on the surface of arterial lipid deposits and that a prerequisite for the removal of such deposits is that the bulk lipid phase be in a liquid or liquid crystalline state. 相似文献
8.
The effects of several proteins on the hydrolysis at pH 3.0 of didecanoylglycerol monolayers by human gastric lipase were investigated. Among the six proteins tested (bovine serum albumin, myoglobin, a protein inhibiting lipase isolated from soya bean, melittin, beta-lactoglobulin and ovalbumin), only the first three proteins were found to inhibit lipase activity. The inhibition capacity of the proteins was not related to the decrease in interfacial tension or to their isoelectric points. However, inhibition of human gastric lipase by proteins may be correlated with the penetration power of the protein into the lipid interface. It is hypothesized that this lipase has a higher penetration power than that of pancreatic lipase, even though the former enzyme is more susceptible to interfacial denaturation. 相似文献
9.
K.-E. Jaeger K. Liebeton A. Zonta K. Schimossek M. T. Reetz 《Applied microbiology and biotechnology》1996,46(2):99-105
Pseudomonas aeruginosa secretes an extracellular lipase (EC 3.1.1.3), which has been isolated from culture media of either industrial fermentation
of wild-type P. aeruginosa PAC1R or an overexpressing P. aeruginosa strain carrying a plasmid with the cloned lipase gene. Both culture supernatants contained enzymatically active lipase protein,
as demonstrated by determination of hydrolytic activity using p-nitrophenylpalmitate and 1,2-O-dilauryl-rac-glycero-3-glutaric acid resorufin ester as substrates and analysis by sodium dodacyl sulphate/polyacrylamide electrophoresis
and Western blotting. Immobilization by entrapment into chemically inert hydrophobic silica gels was tested with crude enzyme
preparations. A matrix consisting of tetramethoxysilane and propyltrimethoxysilane at a molar ratio of 1 : 5 yielded the highest
enzyme activity as determined by esterification of lauric acid with 1-octanol in isooctane. The biotechnological potential
of P. aeruginosa lipase to catalyse the kinetic resolution of chiral compounds was tested by enantioselective acylation of two different model
compounds, racemic 1-phenylethanol and 2-pentylamine. Both compounds were acylated with high efficiency giving enantiomeric
excess rates of more than 99% for the alcohol and 96% for the amine with an average conversion rate of 50%. These results
demonstrated that P. aeruginosa lipase is an extremely useful enzyme for application in synthetic organic chemistry.
Received: 5 February 1996/Received revision: 1 April 1996/Accepted: 15 April 1996 相似文献
10.
Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase 总被引:1,自引:0,他引:1
Lipases of a newly isolated Pseduomonas aeruginosa MTCC 5113 were assessed for transesterification of benzyl alcohol and vinyl acetate to produce the flavoring agent benzyl acetate. Crude lipase preparations that minimized the cost of the biocatalyst, achieved benzyl alcohol conversion of 89% within 3h at 30 degrees C. In contrast, purified and expensive commercially available lipases of Candida antarctica and porcine pancreas achieved much lower conversions at 80% and 15%, respectively. A well-mixed ( approximately 800 rev.min(-1)) batch reactor having the aqueous phase finely dispersed in heptane was used in these studies. Benzyl alcohol conversion was maximal when the enzyme-containing aqueous phase constituted about 50% of the total reactor volume. Use of solvents such as hexane, benzene, toluene and dimethyl sulfoxide reduced conversion compared with the use of heptane. 相似文献
11.
12.
The activity of purified Pseudomonas cepacia lipase has been investigated in esterification reactions of various aliphatic alcohols with natural fatty acids. The reactions were carried out in microemulsions formed in isooctane by bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT). Kinetic studies showed that the reaction follows a ping-pong bi-bi mechanism with inhibition by both substrates. The apparent kinetic parameters of the reaction were found to be K(m octanol) = 310 mM, K(m lauric acid) = 78 mM, and V(max) = 250 mumol min(-1) mg(-1). The same system was used for the synthesis of mono- and diglycerides from glycerol and lauric acid, which was successful at very low w(o) values. The catalytic behavior of P. cepacia lipase was also studied in esterification reactions performed in a nonionic microemulsion system formulated by tetraethyleneglycoldodecylether (C(12)E(4)). The optimum activity was found at about w(o) = 8. The apparent values of V(max app) and K(m app) for octanol were calculated and found to be 100 mumol min(-1) mg(-1) and 76 mM, respectively. (c) 1995 John Wiley & Sons, Inc. 相似文献
13.
14.
15.
A kinetic study of immobilized lipase catalysing the synthesis of isoamyl acetate by transesterification in n-hexane. 总被引:2,自引:0,他引:2
Isoamyl acetate was synthesized by lipase-catalyzed transesterification of ethyl acetate in n-hexane. The selectivity and rates of ester formation decreased when water content of the immobilized enzyme exceeded 3% (w/w). Experimental observations clearly indicate that the substrates as well as the product (ethanol) act as dead-end inhibitors. A ping-pong bi-bi mechanism with competitive inhibition by substrates and products is proposed that predicts the experimental observation satisfactorily. 相似文献
16.
(2S,4aR,8aS)-Cis,cis-, (2R,4aS,8aR)-cis,cis-, rac-cis,cis-, and rac-trans,cis-decahydro-2-naphthyl-N-n-butylcarbamates are synthesized from condensation of (2S,4aR,8aS)-cis,cis-, (2R,4aS,8aR)-cis,cis-, rac-cis,cis-, and rac-trans,cisdecahydro- 2-naphthols, respectively, with n-butyl isocyanate in the presence of triethylamine in dichloromethane. Optically pure (2S,4aR,8aS)-(-)- and (2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthols are resolved by the porcine pancreatic lipase- catalyzed acetylation of decahydro-2-naphthols with vinyl acetate in t-butyl methyl ether. Absolute configurations of (2S,4aR,8aS)-(-)- and (2R,4aS,8aR)-(+)- cis,cis-decahydro-2-naphthols are determined from the 1?F NMR spectra of their Mosher's ester derivatives. (2S,4aR,8aR)-Trans,cis- and (2R,4aS,8aS)-trans,cis-decahydro-2-naphthols can't be resolved from the porcine pancreatic lipase-catalyzed acetylation of decahydro-2-naphthols with vinyl acetate in t-butyl methyl ether. For the inhibitory potency of Pseudomonas lipase, (2S,4aR,8aS)-cis,cis-decahydro-2-naphthyl-N-n-butylcarbamate is 3.5 times more potent than (2R,4aS,8aR)-cis,cis-decahydro-2-naphthyl-N-n-butylcarbamate; racemic cis,cis-decahydro- 2-naphthyl-N-n-butylcarbamate is about the same with trans,cis-decahydro-2-naphthyl-N-n-butylcarbamate. These inhibitors also show similar effects on porcine pancreatic lipase. 相似文献
17.
An isolate of Aspergillus niger was used as source of lipase which was purified to a specific activity of 729 U/mg. It has an acidic pH optimum and has a half-life of 42 h at pH 4.4, which can be increased to 138 h in the presence of 10 mM calcium ions. For the first time a lipase from Aspergillus niger was characterised using the monomolecular film technique. The lipase was classified to have a sn-1 selectivity using diacylglycerols and R-isomer hydrolytic preference with pseudolipids representing triacylglycerols in which two of the ester bonds were replaced with ether and amide linkages. 相似文献
18.
Based on amino-terminal sequencing and mass spectrometry data on the Rhizopus homothallicus lipase extracted using solid (SSF) and submerged state fermentation (SmF) methods, we previously established that the two enzymes were identical. Differences were observed, however, in terms of the specific activity of these lipases and their inhibition by diethyl p-nitrophenyl phosphate (E600). The specific activity of the SSF lipase (10,700 μmol/min/mg) was found to be 1.2-fold that of SmF lipase (8600 μmol/min/mg). These differences might be the result of residual Triton X-100 molecules interacting with the SSF lipase. To check this hypothesis, the SmF lipase was incubated with submicellar concentrations of Triton X-100. The specific activity of the lipase increased after this treatment, reaching similar values to those measured with the SSF lipase. Preincubating SSF and SmF lipases with E600 at a molar excess of 100 for 1 h resulted in 80% and 60% enzyme inhibition levels, respectively. When the SmF lipase was preincubated with Triton X-100 for 1 h at a concentration 100 times lower than the Trition X-100 critical micellar concentration, the inhibition of the lipase by E600 increased from 60% to 80%. These results suggest that residual detergent monomers interacting with the enzyme may after the kinetic properties of the Rh. homothallicus lipase. 相似文献
19.
Enantiomerically pure alkylphosphonate compounds RR′P(O)PNP (R=CnH2n+1, R′=OY with Y=Cn′H2n′+1 with n=n′ or n≠n′; PNP=p-nitrophenoxy) noted (RY), mimicking the transition state occurring during the carboxyester hydrolysis were synthesized and investigated as potential inhibitors of human gastric lipase (HGL) and human pancreatic lipase (HPL). The inhibitory properties of each enantiomer have been tested with the monomolecular films technique in addition to an enyzme linked immunosorbent assay (ELISA) in order to estimate simultaneously the residual enzymatic activity as well as the interfacial lipase binding. With both lipases, no obvious correlation between the inhibitor molar fraction (50) leading to half inhibition, and the chain length, R or Y was observed. (R11Y16)s were the best inhibitor of HPL and (R10Y11)s were the best inhibitors of HGL. We observed a highly enantioselective discrimination, both with the pure enantiomeric alkylphosphonate inhibitors as well as a scalemic mixture. We also showed, for the first time, that this enantioselective recognition can occur either during the catalytic step or during the initial interfacial adsorption step of the lipases. These experimental results were analyzed with two kinetic models of covalent as well as pseudo-competitive inhibition of lipolytic enzymes by two enantiomeric inhibitors. 相似文献