首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer-membrane proteins induced by T4 bacteriophage   总被引:8,自引:0,他引:8  
  相似文献   

2.
Structural proteins of bacteriophage T4   总被引:32,自引:0,他引:32  
  相似文献   

3.
RNA priming of DNA replication by bacteriophage T4 proteins   总被引:13,自引:0,他引:13  
Bacteriophage T4 DNA replication proteins have been shown previously to require ribonucleoside triphosphates to initiator new DNA chains on unprimed single-stranded DNA templates in vitro. This DNA synthesis requires a protein controlled by T4 gene 61, as well as the T4 gene 41, 43 (DNA polymerase), 44, 45, and 62 proteins, and is stimulated by the gene 32 (helix-destabilizing) protein. In this paper, the nature of the RNA primers involved in DNA synthesis by the T4 proteins has been determined, using phi X174 and f1 DNA as model templates. The T4 41 and "61" proteins synthesize pentanucleotides with the sequence pppA-C(N)3 where N in positions 3 and 4 can be G, U, C, or A. The same group of sequences is found in the RNA at the 5' terminus of the phi X174 DNA product made by the seven T4 proteins. The DNA product chains begin at multiple discrete positions on the phi X174 DNA template. The characteristics of the T4 41 and "61" protein priming reaction are thus appropriate for a reaction required to initiate the synthesis of discontinuous "Okazaki" pieces on the lagging strand during the replication of duplex DNA.  相似文献   

4.
Sequences of amino acids of some fiber proteins may have a periodic structure. To analyze this periodicity Fourier transform of a mathematical image of symbolic sequence of amino acids in a protein is sometimes used. In this work we employed one (out of few possible) particular way of doing Fourier transform as the most straightforward and optimal. Employing this optimal Fourier transform method we analyzed periodicity of fiber proteins in bacteriophage T4. As a result we managed to confirm that a certain periodicity exists in the investigated proteins. It was found that for a number of proteins the alternation of elements of the same group in the amino acid sequence with a rather small period T = 15 exists, whereas for some other proteins alternations have small periods 10 and 8. The new result is a discovery of relatively large periods of amino acids alternations, which divide the amino acids sequence of the protein into 4 or 6 equal parts. These data on the amino acids periodicity allowed us to align amino acids sequences in accordance with the established periods of both types, in agreement with certain results obtained in X-ray crystallography and electron microscopy experiments.  相似文献   

5.
Hypothetical lambda protein ORF314 shows significant homology with the carboxyl end of phage T4 tail-fiber protein gp37. Homology can also be demonstrated between hypothetical lambda protein ORF194 and a fragment of bacteriophage T4 protein gp38. This sequence homology is also reflected in the genomic sequences of these two phages.  相似文献   

6.
7.
Size distributions of mutant clones can reveal important aspects of the mutation process. Previously published data on mutant clones induced by ethyl methanesulfonate (EMS) in bacteriophage T4 generated a distribution that was essentially flat, implying a mutagenic mechanism involving only rare mispairing by reacted bases. Here, methods for estimating the spontaneous component of such a distribution are used to generate a corrected distribution. The corrected distribution is strongly peaked, implying frequent (but not obligatory) mispairing. Frequent mispairing is in accord with current views of the fates of DNA lesions believed to mediate EMS-induced mutagenesis.  相似文献   

8.
The effect of the attachment of long tail fibers on the structure of proteins of the bacteriophage T4 baseplate was studied by digital processing of electron microscopic images. The attachment of the long fibers was found to result in dramatical changes of the proteins of the baseplate plag, while the wedges, to which the long fibers are attached, undergo only slight changes. We studied the baseplates with one to six attached fibers and found that the attachment of one fiber resulted in the change of the entire baseplate, although the wedge located in the vicinity of the fiber attachment changed to a greater extent. Only after the attachment of three and more fibers the changes of the same kind occurred through the entire baseplate.  相似文献   

9.
Beattie TR  Bell SD 《The EMBO journal》2012,31(6):1556-1567
Chromosomal DNA replication requires one daughter strand-the lagging strand-to be synthesised as a series of discontinuous, RNA-primed Okazaki fragments, which must subsequently be matured into a single covalent DNA strand. Here, we describe the reconstitution of Okazaki fragment maturation in vitro using proteins derived from the archaeon Sulfolobus solfataricus. Six proteins are necessary and sufficient for coupled DNA synthesis, RNA primer removal and DNA ligation. PolB1, Fen1 and Lig1 provide the required catalytic activities, with coordination of their activities dependent upon the DNA sliding clamp, proliferating cell nuclear antigen (PCNA). S. solfataricus PCNA is a heterotrimer, with each subunit having a distinct specificity for binding PolB1, Fen1 or Lig1. Our data demonstrate that the most efficient coupling of activities occurs when a single PCNA ring organises PolB1, Fen1 and Lig1 into a complex.  相似文献   

10.
Polyamine depletion causes S phase prolongation, and earlier studies indicate that the elongation step of DNA replication is affected. This led us to investigate the effects of polyamine depletion on enzymes crucial for Okazaki fragment maturation in the two breast cancer cell lines MCF-7 and L56Br-C1. In MCF-7 cells, treatment with N(1),N(11)-diethylnorspermine (DENSPM) causes S phase prolongation. In L56Br-C1 cells the prolongation is followed by massive apoptosis. In the present study we show that L56Br-C1 cells have substantially lower basal expressions of two Okazaki fragment maturation key proteins, DNA ligase I and FEN1, than MCF-7 cells. Thus, these two proteins might be promising markers for prediction of polyamine depletion sensitivity, something that can be useful for cancer treatment with polyamine analogues. DENSPM treatment affects the cellular distribution of FEN1 in L56Br-C1 cells, but not in MCF-7 cells, implying that FEN1 is affected by or involved in DENSPM-induced apoptosis.  相似文献   

11.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

12.
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.  相似文献   

13.
Isolation and reassembly of bacteriophage T4 core proteins   总被引:1,自引:0,他引:1  
The products of genes 22, 67 and 68, and the internal proteins IPI, IPII and IPIII, as components of the scaffolding core of the bacteriophage T4 prohead, have been isolated and purified by hydroxylapatite column chromatography. Under conditions promoting reassembly in vitro, the proteins associated into elongated particles of practically constant width but variable length that we have called polycores. Preliminary optical diffraction experiments indicate that polycores may have an ordered structure, possibly helical, as has been suggested for the polyhead core. The coassembly of core proteins and the purified shell protein gp23 results in the formation of core-containing polyheads. Occasionally, prolate core-like particles have been observed but their reproducible formation has not been attained. Attempts to investigate the role of the minor prohead component gp20 in core assembly have been made through the cloning of the corresponding gene in an expression vector and subsequent purification of the protein.  相似文献   

14.
Abstract A type A Clostridium perfringens enterotoxin was chially purified by ammonium sulfate precipitation (0 to 15%) and was submitted to polyacrylamide gel electrophoresis (7%). A specific enterotoxin antiserum was obtained by inoculating a rabbit with the polyacrylamide gel strip containing the enterotoxin. This serum gave only one precipitin line with purified enterotoxin and cellular extract in immunodiffusion and immunoelectrophoresis. The titer (1:8) in counter-immunoelectrophoresis was sufficient to detect 0.39 μg/ml enterotoxin by this technique. This serum neutralized the mouse lethality, cytotoxicity and plating efficiency of Vero cells.  相似文献   

15.
16.
Rescue of adsorption properties from UV-irradiated T4 by T2 as a helper phage, revealed progeny phage with intermediate properties. Fourteen independent progeny phages, plating onE. coli B/2, were plated on several indicator strains and their adsorption properties were also studied with specific T4 antibodies. Two of these, plating onE. coli KS/4, were not inactivated by the T4 antiserum, and were T2h without apparent T4 properties. The other 12 progeny phages did not plate on KS/4, and were inactivated, but at a slower rate than the parental T4. Their mean efficiency of plating onE. coli B/2 (0.83) was significantly lower than that of the parental T4. The efficiency of plating was positively correlated with the velocity of inactivation by T4 antiserum. The observations were explained by assuming that the progeny phages were recombinants of T4 and T2 loci for adsorption sites. Plating of these 12 progeny phages on several indicator strains showed that they were allrII mutants and all, except one, wererI mutants too. In addition, two weretu andh 4, respectively. The condition for the appearance of multiple mutants might be a complementation by T2 of UV-damaged functions, which otherwise fail to induce the completion of the lytic cycle in monocomplexes of extracellularly irradiated T4.  相似文献   

17.
Partially replicated bacteriophage T7 DNA was isolated from Escherichia coli infected with UV-irradiated T7 bacteriophage and was analyzed by electron microscopy. The analysis determined the distribution of eye forms and forks in the partially replicated molecules. Eye forms and forks in unit length molecules were aligned with respect to the left end of the T7 genome, and segments were scored for replication in each molecule. The resulting histogram showed that only the left 25 to 30% of the molecules was replicated. Several different origins of DNA replication were used to initiate replication in the UV-irradiated experiments in which 32P-labeled progeny DNA from UV-irradiated phage was annealed with ordered restriction fragments of T7 DNA (K. B. Burck and R. C. Miller, Jr., Proc. Natl. Acad. Sci. U.S.A. 75:6144--6148, 1978). Both analyses support partial-replica hypotheses (N. A. Barricelli and A. H. Doermann, Virology 13:460--476, 1961; Doermann et al., J. Cell. comp. Physiol. 45[Suppl.]:51--74, 1955) as an explanation for the distribution of marker rescue frequencies during cross-reactivation; i.e., replication proceeds in a bidirectional manner from an origin to a site of UV damage, and those regions of the genome which replicate most efficiently are rescued most efficiently by a coinfecting phage. In addition, photoreactivation studies support the hypothesis that thymine dimers are the major UV damage blocking cross-reactivation in the right end of the T7 genome.  相似文献   

18.
An epistasis group of mutations engendering increased sensitivity to diverse DNA-damaging agents was described previously in bacteriophage T4. These mutations are alleles of genes 32 and 41, which, respectively, encode a single-stranded DNA-binding protein (gp32) and the replicative DNA helicase (gp41). The mechanism by which the lethality of DNA damage is mitigated is unknown but seems not to involve the direct reversal of damage, excision repair, conventional recombination repair, or translesion synthesis. Here we explore the hypothesis that the mechanism involves a switch in DNA primer extension from the cognate template to an alternative template, the just-synthesized daughter strand of the other parental strand. The activities of the mutant proteins are reduced about 2-fold (for gp32) or 4-fold (for gp41) in replication complexes catalyzing coordinated synthesis of leading and lagging strands, in binding single-stranded DNA, promoting DNA annealing, and promoting branch migration. In striking contrast, the mutant proteins are strongly impaired in promoting template switching, thus supporting the hypothesis of survival by template switching.  相似文献   

19.
20.
Profiles of bacteriophage T4 early proteins resolved by a two-dimensional nonequilibrium pH gradient electrophoresis system (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell, Cell 12:1133--1142, 1977) are presented. Over 65 phage-induced proteins were resolved. Amber or deletion mutants were used to identify 17 proteins in the gel patterns as the products of specific genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号