首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin-depolymerizing factor (ADF)/cofilin and gelsolin are the two major factors to enhance actin filament disassembly. Actin-interacting protein 1 (AIP1) enhances fragmentation of ADF/cofilin-bound filaments and caps the barbed ends. However, the mechanism by which AIP1 disassembles ADF/cofilin-bound filaments is not clearly understood. Here, we directly observed the effects of these proteins on filamentous actin by fluorescence microscopy and gained novel insight into the function of ADF/cofilin and AIP1. ADF/cofilin severed filaments and AIP1 strongly enhanced disassembly at nanomolar concentrations. However, gelsolin, gelsolin-actin complex, or cytochalasin D did not enhance disassembly by ADF/cofilin, suggesting that the strong activity of AIP1 cannot be explained by simple barbed end capping. Barbed end capping by ADF/cofilin and AIP1 was weak and allowed filament elongation, whereas gelsolin or gelsolin-actin complex strongly capped and inhibited elongation. These results suggest that AIP has an active role in filament severing or depolymerization and that ADF/cofilin and AIP1 are distinct from gelsolin in modulating filament elongation.  相似文献   

2.
BACKGROUND: Dynamic remodeling of the actin cytoskeleton requires rapid turnover of actin filaments, which is regulated in part by the actin filament severing/depolymerization factor cofilin/ADF. Two factors that cooperate with cofilin are Srv2/CAP and Aip1. Human CAP enhances cofilin-mediated actin turnover in vitro, but its biophysical properties have not been defined, and there has been no in vivo evidence reported for its role in turnover. Xenopus Aip1 forms a cofilin-dependent cap at filament barbed ends. It has been unclear how these diverse activities are coordinated in vivo. RESULTS: Purified native yeast Srv2/CAP forms a high molecular weight structure comprised solely of actin and Srv2. The complex is linked to actin filaments via the SH3 domain of Abp1. Srv2 complex catalytically accelerates cofilin-dependent actin turnover by releasing cofilin from ADP-actin monomers and enhances the ability of profilin to stimulate nucleotide exchange on ADP-actin. Yeast Aip1 forms a cofilin-dependent filament barbed end cap, disrupted by the cof1-19 mutant. Genetic analyses show that specific combinations of activities mediated by cofilin, Srv2, Aip1, and capping protein are required in vivo. CONCLUSIONS: We define two genetically and biochemically separable functions for cofilin in actin turnover. One is formation of an Aip1-cofilin cap at filament barbed ends. The other is cofilin-mediated severing/depolymerization of filaments, accelerated indirectly by Srv2 complex. We show that the Srv2 complex is a large multimeric structure and functions as an intermediate in actin monomer processing, converting cofilin bound ADP-actin monomers to profilin bound ATP-actin monomers and recycling cofilin for new rounds of filament depolymerization.  相似文献   

3.
Ono S 《Biochemistry》2003,42(46):13363-13370
Actin depolymerizing factor (ADF)/cofilin enhances turnover of actin filaments by severing and depolymerizing filaments. A number of proteins functionally interact with ADF/cofilin to modulate the dynamics of actin filaments. Actin-interacting protein 1 (AIP1) has emerged as a conserved WD-repeat protein that specifically enhances ADF/cofilin-induced actin dynamics. Interaction of AIP1 with actin was originally characterized by a yeast two-hybrid system. However, biochemical studies revealed its unique activity on ADF/cofilin-bound actin filaments. AIP1 alone has negligible effects on actin filament dynamics, whereas in the presence of ADF/cofilin, AIP1 enhances filament fragmentation by capping ends of severed filaments. Studies in model organisms demonstrated that AIP1 genetically interacts with ADF/cofilin and participates in several actin-dependent cellular events. The crystal structure of AIP1 revealed its unique structure with two seven-bladed beta-propeller domains. Thus, AIP1 is a new class of actin regulatory proteins that selectively enhances ADF/cofilin-dependent actin filament dynamics.  相似文献   

4.
Plasma gelsolin formed a very tight 1:2 complex with G-actin in the presence of Ca2+, but no interaction between gelsolin and G-actin was detected in the presence of excess EGTA. However, the 1:2 complex dissociated into a 1:1 gelsolin:actin complex and monomeric actin when excess EGTA was added. Plasma gelsolin bound tightly to the barbed ends of actin filaments and also severed filaments in the presence of Ca2+ and bound weakly to the filament barbed end in the presence of EGTA. The 1:2 gelsolin-actin complex bound to the barbed ends of filaments but did not sever them. By blocking the barbed end of filaments with plasma gelsolin, we determined the critical concentration at the pointed end in 1 mM MgCl2 and 0.2 mM ATP to be 4 microM. The dissociation rate constant for ADP-G-actin from the pointed end was estimated to be about 0.4 s-1 and the association rate constant to be about 5 X 10(4) M-1 s-1. Finally, we obtained evidence that plasma gelsolin accelerates but does not bypass the nucleation step and, therefore, that the concentration of gelsolin does not directly determine the concentration of filaments polymerized in its presence. Thus, gelsolin-capped filaments may not provide an absolutely reliable method for determining the rate constant for the association of ATP-G-actin at the pointed ends of filaments, but a reasonable estimate would be 1 X 10(5) M-1 s-1 in 1 mM MgCl2 and 0.2 mM ATP.  相似文献   

5.
Aip1 (actin interacting protein 1) is ubiquitous in eukaryotic organisms, where it cooperates with cofilin to disassemble actin filaments, but neither its mechanism of action nor its biological functions have been clear. We purified both fission yeast and human Aip1 and investigated their biochemical activities with or without cofilin. Both types of Aip1 bind actin filaments with micromolar affinities and weakly nucleate actin polymerization. Aip1 increases up to 12-fold the rate that high concentrations of yeast or human cofilin sever actin filaments, most likely by competing with cofilin for binding to the side of actin filaments, reducing the occupancy of the filaments by cofilin to a range favorable for severing. Aip1 does not cap the barbed ends of filaments severed by cofilin. Fission yeast lacking Aip1 are viable and assemble cytokinetic contractile rings normally, but rings in these Δaip1 cells accumulate 30% less myosin II. Further, these mutant cells initiate the ingression of cleavage furrows earlier than normal, shortening the stage of cytokinetic ring maturation by 50%. The Δaip1 mutation has negative genetic interactions with deletion mutations of both capping protein subunits and cofilin mutations with severing defects, but no genetic interaction with deletion of coronin.  相似文献   

6.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

7.
Cofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments. Imaging studies concluded that bound clusters must reach a critical size (Cc) of 13–100 cofilins to sever filaments. In contrast, structural and modeling studies suggest that a few or even a single cofilin can sever filaments, possibly with different severing rate constants. How clusters grow through the cooperative incorporation of additional cofilin molecules, specifically if they elongate asymmetrically or uniformly from both ends and if they are modulated by filament shape and external force, also lacks consensus. Here, using hydrodynamic flow to visualize individual actin filaments with TIRF microscopy, we found that neither flow-induced filament bending, tension, nor surface attachment conditions substantially affected the kinetics of cofilin binding to actin filaments. Clusters of bound cofilin preferentially extended toward filament pointed ends and displayed severing competency at small sizes (Cc < 3), with no detectable severing dependence on cluster size. These data support models in which small clusters of cofilin introduce local, but asymmetric, structural changes in actin filaments that promote filament severing with a rate constant that depends weakly on the size of the cluster.  相似文献   

8.
Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.  相似文献   

9.
BACKGROUND: The rapid dynamics of actin filaments is a fundamental process that powers a large number of cellular functions. However, the basic mechanisms that control and coordinate such dynamics remain a central question in cell biology. To reach beyond simply defining the inventory of molecules that control actin dynamics and to understand how these proteins act synergistically to modulate filament turnover, we combined evanescent-wave microscopy with a biomimetic system and followed the behavior of single actin filaments in the presence of a physiologically relevant mixture of accessory proteins. This approach allows for the real-time visualization of actin polymerization and age-dependent filament severing. RESULTS: In the presence of actin-depolymerizing factor (ADF)/cofilin and profilin, actin filaments with a processive formin attached at their barbed ends were observed to oscillate between stochastic growth and shrinkage phases. Fragmentation of continuously growing actin filaments by ADF/cofilin is the key mechanism modulating the prominent and frequent shortening events. The net effect of continuous actin polymerization, driven by a processive formin that uses profilin-actin, and of ADF/cofilin-mediating severing that trims the aged ends of the growing filaments is an up to 155-fold increase in the rate of actin-filament turnover in vitro in comparison to that of actin alone. Lateral contact between actin filaments dampens the dynamics and favors actin-cable formation. A kinetic simulation accurately validates these observations. CONCLUSIONS: Our proposed mechanism for the control of actin dynamics is dominated by ADF/cofilin-mediated filament severing that induces a stochastic behavior upon individual actin filaments. When combined with a selection process that stabilizes filaments in bundles, this mechanism could account for the emergence and extension of actin-based structures in cells.  相似文献   

10.
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.  相似文献   

11.
Actin-interacting protein 1 (AIP1) is a WD40 repeat protein that enhances actin filament disassembly in the presence of actin-depolymerizing factor (ADF)/cofilin. AIP1 also caps the barbed end of ADF/cofilin-bound actin filament. However, the mechanism by which AIP1 interacts with ADF/cofilin and actin is not clearly understood. We determined the crystal structure of Caenorhabditis elegans AIP1 (UNC-78), which revealed 14 WD40 modules arranged in two seven-bladed beta-propeller domains. The structure allowed for the mapping of conserved surface residues, and mutagenesis studies identified five residues that affected the ADF/cofilin-dependent actin filament disassembly activity. Mutations of these residues, which reside in blades 3 and 4 in the N-terminal propeller domain, had significant effects on the disassembly activity but did not alter the barbed end capping activity. These data support a model in which this conserved surface of AIP1 plays a direct role in enhancing fragmentation/depolymerization of ADF/cofilin-bound actin filaments but not in barbed end capping.  相似文献   

12.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

13.
One of the earliest events in the process of cell motility is the massive generation of free actin barbed ends, which elongate to form filaments adjacent to the plasma membrane at the tip of the leading edge. Both cofilin and Arp2/3 complex have been proposed to contribute to barbed end formation during cell motility. Attempts to assess the functions of cofilin and Arp 2/3 complex in vivo indicate that both cofilin and Arp2/3 complex contribute to actin polymerization: cofilin by severing and Arp2/3 by nucleating and branching. In order to determine if the activities of cofilin and Arp2/3 complex interact, we employed a light microscope-based assay to visualize actin polymerization directly in the presence of both proteins. The results indicate that cofilin generates barbed ends to increase the mass of freshly polymerized F-actin but does not directly affect the activity of Arp2/3 complex. However, while ADP, ADP-Pi, and newly polymerized ATP-filaments are all capable of supporting Arp2/3-mediated branching, newly polymerized F-actin supports most of the Arp2/3-induced branch formation. The results suggest that, in vivo, cofilin contributes to barbed end formation by inducing the initial increase in the number of barbed ends leading to increased ATP-F-actin, which in turn supports higher levels of dendritic nucleation by active Arp2/3 complex.  相似文献   

14.
The turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist.

IntroductionIn cells, actin assembles into filament networks with diverse architectures and lifetimes, playing key roles in functions such as endocytosis, cell motility, and cell division. These filament networks are maintained and renewed by actin turnover, which implies that assembly and disassembly must take place simultaneously and in a controlled manner within the networks. Each actin filament end has the ability to either grow or shrink, depending on the concentration of actin and regulatory proteins, but pure actin treadmills at steady state: ATP-actin is added at the barbed end at a rate matching the departure of ADP-actin from the pointed end, and ATP hydrolysis takes place within the filament. This hallmark feature of actin dynamics has been known for decades (Wegner, 1976) and has been generalized to the cell context, in which it is commonly assumed that actin polymerization takes place at the barbed end, while depolymerization takes place only at the pointed end (whether it be the ends of filaments within the network or the ends of fragments that have detached from it). This notion is reinforced by the fact that the cytoplasm contains high concentrations of monomeric actin (G-actin) in complex with profilin (Funk et al., 2019), which is unable to bind to pointed ends and should drive the elongation of all noncapped barbed ends.Recently, however, in vitro studies have identified two seemingly independent mechanisms in which, in the presence of profilin-actin, filament barbed ends alternate between phases of growth and depolymerization. This behavior, referred to as “dynamic instability,” is widely observed for microtubules but was unexpected for actin filaments. It suggests that cells could use barbed ends for both elongation and disassembly.Driving the depolymerization of barbed ends with cofilin side-decorationProteins of the actin depolymerizing factor (ADF)/cofilin family (henceforth cofilin) are composed of a single ADF-homology (ADF-H) domain and are mostly known for their actin filament–severing activity (De La Cruz, 2009). Cofilin binds cooperatively to the sides of actin filaments, forming clusters where the conformation of the filament is locally altered, leading to its severing at cofilin cluster boundaries. In addition, the barbed ends of cofilin-decorated filaments steadily depolymerize, despite the presence of G-actin and profilin-actin (Fig. 1 A) and even capping protein (CP) in solution (Wioland et al., 2017, 2019). This unexpected result likely originates from the conformational change of actin subunits at the barbed end, induced by cofilin side-binding. As a consequence, filaments exposed to G-actin (with or without profilin), CP, and cofilin alternate between phases of barbed-end elongation and barbed-end depolymerization. In these conditions, actin filament barbed ends thus exhibit a form of dynamic instability.Open in a separate windowFigure 1.Two mechanisms that give rise to barbed-end depolymerization in elongation-promoting conditions. (A) When a cofilin side-decorated region reaches the barbed end, adding a new actin or profilin-actin becomes very difficult, and the barbed end depolymerizes. Not represented: Capping by CP can lead to depolymerization, as it allows the cofilin cluster to reach the barbed end, which then has a much weaker affinity for CP and steadily depolymerizes. Also, severing events occur at cofilin cluster boundaries, creating new barbed ends, either bare or cofilin-decorated. (B) Twinfilin binds to the barbed end, preventing its elongation and causing its depolymerization. Whether twinfilin remains processively attached to the depolymerizing barbed end or departs with the actin subunits is still unknown. Twinfilin has no impact on the elongation of mDia1-bearing barbed ends.Driving the depolymerization of barbed ends with twinfilin end-targetingTwinfilin has two ADF-H domains, but unlike cofilin, it binds poorly to the sides of actin filaments. Rather, twinfilin appears to mainly sequester ADP-actin monomers and target the barbed end to modulate its elongation and capping. Recent in vitro studies have shown that the interaction of twinfilin with actin filament barbed ends could drive their depolymerization, even in the presence of G-actin and profilin-actin (Johnston et al., 2015; Hakala et al., 2021; Shekhar et al., 2021). Very interestingly, the processive barbed-end elongator formin mDia1 is able to protect barbed ends from twinfilin, allowing them to sustain elongation (Shekhar et al., 2021). This leads to a situation in which, as filaments are exposed to profilin-actin and twinfilin, mDia1-bearing barbed ends elongate while bare barbed ends depolymerize (Fig. 1 B). It is safe to assume that, if filaments were continuously exposed to this protein mix including formin in solution, they would alternate between phases of growth and shrinkage over time, as formins come on and fall off the barbed end. This mix of proteins would therefore constitute another situation causing actin filament dynamic instability.From actin treadmilling to dynamic instability, in cells?This newly identified versatile behavior of actin filaments is reminiscent of microtubules. While dynamic instability is the hallmark behavior of microtubules, they can also be made to treadmill steadily by adding 4 microtubule-associated proteins (Arpağ et al., 2020). In cells, both microtubule dynamic instability and treadmilling have been clearly observed (Wittmann et al., 2003). In contrast, the disassembly of single actin filaments, either embedded in a network or severed from it, has not yet been directly observed in cells. Despite insights from techniques such as single-molecule speckle microscopy, it is still unclear from which end actin filaments depolymerize, even in networks that appear to globally treadmill, such as the lamellipodium. Pointed end depolymerization alone cannot account for what is observed in cells (Miyoshi et al., 2006) and alternative mechanisms have been proposed, including brutal filament-to-monomer transitions occurring in bursts, driven by cofilin, coronin, and Aip1 (Brieher, 2013; Tang et al., 2020).In cells, the high amounts of available G-actin (tens of micromolars; Funk et al., 2019) should limit barbed-end depolymerization. Based on the reported on-rate for ATP–G-actin at the barbed ends of cofilin-decorated filaments (Wioland et al., 2017, 2019), we can estimate that these barbed ends, under such conditions, would depolymerize for tens of seconds before being “rescued,” which is enough to remove tens of subunits from each filament. In contrast, twinfilin concentrations similar to those of G-actin appear necessary to drive barbed-end depolymerization (Hakala et al., 2021; Shekhar et al., 2021). As proteomics studies in HeLa cells report that twinfilin is 50-fold less abundant than actin, this may be difficult to achieve in cells (Bekker-Jensen et al., 2017). However, future studies may uncover proteins, or posttranslational modifications of actin, that enhance the ability of twinfilin to drive barbed-end depolymerization in the presence of high concentrations of profilin-actin.Molecular insights and possible synergiesWhile cofilin and twinfilin both interact with actin via ADF-H domains, they appear to drive barbed-end depolymerization through different mechanisms: twinfilin by directly targeting the barbed end, and cofilin by decorating the filament sides, thereby changing the conformation of the filament and putting its barbed end in a depolymerization-prone state.The two mechanisms, nonetheless, share clear similarities. For instance, cofilin side-binding and twinfilin end-targeting both slow down ADP-actin barbed-end depolymerization, compared with bare ADP-actin filaments (Wioland et al., 2017; Hakala et al., 2021; Shekhar et al., 2021). Strikingly, a crystal structure of the actin/twinfilin/CP complex indicates that the actin conformational change induced by twinfilin binding at the barbed end is similar to that induced by cofilin decorating the sides (Mwangangi et al., 2021). It is thus possible that the dynamic instability of actin filament barbed ends reflects the same conformation changes, triggered either by cofilin side-decoration or twinfilin end-targeting.In addition to decorating the filament sides, cofilin targets ADP-actin barbed ends. Unlike twinfilin, the direct interaction of cofilin with the barbed end cannot cause its depolymerization in the presence of ATP-actin monomers. Indeed, cofilin end-targeting accelerates the depolymerization of ADP-actin barbed ends in the absence of G-actin, but cofilin does not appear to interact with growing ATP-actin barbed ends (Wioland et al., 2017). This is in stark contrast with twinfilin end-targeting, which slows down ADP-actin depolymerization and accelerates ADP–Pi-actin depolymerization (Shekhar et al., 2021). These different behaviors regarding the nucleotide state of actin are intriguing and should be investigated further.Cofilin thus needs to decorate the filament sides in order to have an impact on barbed-end dynamics in elongation-promoting conditions. However, it is unknown whether cofilin side-decoration extends all the way to the terminal subunits and occupies sites that twinfilin would target. Thus, it is unclear whether cofilin and twinfilin would compete or synergize to drive barbed-end depolymerization.Synergies with other proteins are also worth further investigation, CP being an interesting candidate. Cofilin side-decoration drastically decreases the barbed-end affinity for CP, and capped filaments are thereby an efficient intermediate to turn growing barbed ends into depolymerizing barbed ends (Wioland et al., 2017). Twinfilin interacts with CP and the barbed end to enhance uncapping (Hakala et al., 2021; Mwangangi et al., 2021). Since CP can bind mDia1-bearing barbed ends and displace mDia1 (Bombardier et al., 2015; Shekhar et al., 2015), perhaps CP can also contribute to turn growing, mDia1-bearing barbed ends into depolymerizing barbed ends, by removing mDia1 from barbed ends and subsequently getting displaced from the barbed end by twinfilin.Finally, it is worth noting that profilin, which does not contain an ADF-H domain, also interacts with the barbed face of G-actin and with the barbed end of the filament. When profilin is in sufficient excess, it is able to promote barbed-end depolymerization in the presence of ATP–G-actin (Pernier et al., 2016). Unlike twinfilin, its depolymerization-promoting activity is not prevented by formin mDia1, and it thus does not lead to dynamic instability (bare and mDia1-bearing barbed ends all either grow or depolymerize). The coexistence of growing, mDia1-bearing barbed ends and depolymerizing, twinfilin-targeted barbed ends (Fig. 1 B) was observed in the presence of profilin (Shekhar et al., 2021), but profilin actually may not be required. Future studies should determine the exact role of profilin in this mechanism.ConclusionThe extent to which barbed-end dynamic instability contributes to actin turnover in cells is not known, but possible molecular mechanisms have now been identified. They should change the way we envision actin network dynamics, as we must now consider the possibility that cells also exploit the barbed end for disassembly. More work is needed to further document these mechanisms, but the idea of a “generalized treadmilling” has now been contradicted at its source: in vitro experiments.  相似文献   

15.
Formins are a conserved class of proteins expressed in all eukaryotes, with known roles in generating cellular actin-based structures. The mammalian formin, FRLalpha, is enriched in hematopoietic cells and tissues, but its biochemical properties have not been characterized. We show that a construct composed of the C-terminal half of FRLalpha (FRLalpha-C) is a dimer and has multiple effects on muscle actin, including tight binding to actin filament sides, partial inhibition of barbed end elongation, inhibition of barbed end binding by capping protein, acceleration of polymerization from monomers, and actin filament severing. These multiple activities can be explained by a model in which FRLalpha-C binds filament sides but prefers the topology of sides at the barbed end (end-sides) to those within the filament. This preference allows FRLalpha-C to nucleate new filaments by side stabilization of dimers, processively advance with the elongating barbed end, block interaction between C-terminal tentacles of capping protein and filament end-sides, and sever filaments by preventing subunit re-association as filaments bend. Another formin, mDia1, does not reduce the barbed end elongation rate but does block capping protein, further supporting an end-side binding model for formins. Profilin partially relieves barbed end elongation inhibition by FRLalpha-C. When non-muscle actin is used, FRLalpha-C's effects are largely similar. FRLalpha-C's ability to sever filaments is the first such activity reported for any formin. Because we find that mDia1-C does not sever efficiently, severing may not be a property of all formins.  相似文献   

16.
Filament assembly from profilin-actin   总被引:2,自引:0,他引:2  
Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  相似文献   

17.
How is actin polymerization nucleated in vivo?   总被引:13,自引:0,他引:13  
Actin polymerization in vivo is dependent on free barbed ends that act as nuclei. Free barbed ends can arise in vivo by nucleation from the Arp2/3 complex, uncapping of barbed ends on pre-existing filaments or severing of filaments by cofilin. There is evidence that each mechanism operates in cells. However, different cell types use different combinations of these processes to generate barbed ends during stimulated cell motility. Here, I describe recent attempts to define the relative contributions of these three mechanisms to actin nucleation in vivo. The rapid increase in the number of barbed ends during stimulation is not due to any single mechanism. Cooperation between capping proteins, cofilin and the Arp2/3 complex is necessary for the development of protrusive force at the leading edge of the cell: uncapping and cofilin severing contributing barbed ends, whereas activity of the Arp2/3 complex is necessary, but not sufficient, for lamellipod extension. These results highlight the need for new methods that enable the direct observation of actin nucleation and so define precisely the relative contributions of the three processes to stimulated cell motility.  相似文献   

18.
Cofilin is essential for cell viability and for actin-based motility. Cofilin severs actin filaments, which enhances the dynamics of filament assembly. We investigated the mechanism of filament severing by cofilin with direct fluorescence microscopy observation of single actin filaments in real time. In cells, actin filaments are likely to be attached at multiple points along their length, and we found that attaching filaments in such a manner greatly increased the efficiency of filament severing by cofilin. Cofilin severing increased and then decreased with increasing concentration of cofilin. Together, these results indicate that cofilin severs the actin filament by a mechanism of allosteric and cooperative destabilization. Severing is more efficient when relaxation of this cofilin-induced instability of the actin filament is inhibited by restricting the flexibility of the filament. These conclusions have particular relevance to cofilin function during actin-based motility in cells and in synthetic systems.  相似文献   

19.
Rapid actin turnover is essential for numerous actin‐based processes. However, how it is precisely regulated remains poorly understood. Actin‐interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin‐depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate‐limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down‐regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over‐expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF‐mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real‐time visualization of single filament dynamics showed that OsAIP1 enhanced ADF‐mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off‐rate were enhanced in OsAIP1 over‐expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F‐actin levels in plants.  相似文献   

20.
A mathematical model is derived to describe the distributions of lengths of cytoskeletal actin filaments, along a 1 D transect of the lamellipod (or along the axis of a filopod) in an animal cell. We use the facts that actin filament barbed ends are aligned towards the cell membrane and that these ends grow rapidly in the presence of actin monomer as long as they are uncapped. Once a barbed end is capped, its filament tends to be degraded by fragmentation or depolymerization. Both the growth (by polymerization) and the fragmentation by actin-cutting agents are depicted in the model, which takes into account the dependence of cutting probability on the position along a filament. It is assumed that barbed ends are capped rapidly away from the cell membrane. The model consists of a system of discrete-integro-PDE's that describe the densities of barbed filament ends as a function of spatial position and length of their actin filament “tails”. The population of capped barbed ends and their trailing filaments is similarly represented. This formulation allows us to investigate hypotheses about the fragmentation and polymerization of filaments in a caricature of the lamellipod and compare theoretical and observed actin density profiles. Received: 19 May 2000 / Revised version: 12 March 2001 / Published online: 19 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号