首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain ( Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).  相似文献   

2.
Microbial enrichments from Cr(VI) contaminated and uncontaminated US Department of Energy Hanford Site sediments produced Cr(VI) reducing consortia when grown in the presence of Cr(VI) with acetate, D-xylose or glycerol as a carbon and energy source. Eight of the nine isolates from the consortia were Gram positive and four of these were identified by 16S rRNA sequence homology and membrane fatty acid composition as belonging to the genus Cellulomonas. Two strains, ES6 and WS01, were further examined for their ability to reduce Cr(VI) under growth and non-growth conditions. During fermentative growth on D-xylose, ES6 and WS01 decreased aqueous Cr(VI) concentrations from 0.04 mM Cr(VI) to below the detection limit (0.002 mM Cr(VI)) in less than three days and retained their ability to reduce Cr(VI) even after four months of incubation. Washed ES6 and WS01 cells also reduced Cr(VI) under non-growth conditions for over four months, both with and without the presence of an exogenous electron donor. K-edge XANES spectroscopy confirmed the reduction of Cr(VI) to Cr(III). The ability to reduce Cr(VI) after growth had stopped and in the absence of an external electron donor, suggests that stimulation of these types of organisms may lead to effective long-term, in situ passive reactive barriers for Cr(VI) removal. Our results indicate that Cr(VI) reduction by indigenous Cellulomonas spp. may be a potential method of in situ bioremediation of Cr(VI) contaminated sediment and groundwater.  相似文献   

3.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

4.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

5.
The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the Department of Energy site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in Cr(VI) remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction rates as these chemical species are likely to be present in, or added to, the environment during in situ bioremediation. Results indicated that the type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. Molasses stimulated Cr(VI) reduction more effectively than pure sucrose, presumably due to presence of more easily utilizable sugars, electron shuttling compounds or compounds with direct Cr(VI) reduction capabilities. Cr(VI) reduction rates increased with increasing concentration of anthraquinone-2,6-disulfonate (AQDS) regardless of the carbon source. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II), which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems was the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that was Cr(VI), Fe(III), or AQDS.  相似文献   

6.
Cr(VI) immobilization in systems containing Fe-bearing soil minerals was studied in batch and column systems. Batch experiments showed that water chemistry such as solution pH and Cr(VI) concentration had a pronounced impact on Cr(VI) removal by Fe-bearing soil minerals. Acidic conditions were observed to be more favorable for enhanced Cr(VI) removal. The dependence of Cr(VI) removal on Cr(VI) concentration indicated that there were limited numbers of surface sites on Fe-bearing minerals responsible for Cr(VI) removal. A complexing agent, citrate, significantly enhanced both Cr(VI) removal and total Fe-dissolution from the mineral surfaces relative to non-citrate containing systems, and the iron dissolved from the mineral surfaces was in Fe(III) oxidation form, implying that Cr(VI) removal occurred mainly on mineral surfaces, and the surface Fe(II) sites played an active role in Cr(VI) reduction. The results from column experiments showed that the accumulation of surface precipitates resulted in clogging of pore spaces, thereby creating preferential flow paths within the column. However, the addition of citrate significantly prevented the accumulation of surface precipitates due to the formation of highly soluble Fe–citrate complexes. SEM images revealed that the precipitates accumulated in the column had sponge-like shapes. The energy-dispersive spectroscopy analysis provided further evidence that the surface precipitates formed also contained Cr species as well as Fe. Overall it is clear that Fe-bearing minerals may serve as an effective reducing agent for in-situ reductive immobilization of hexavalent chromium in subsurface systems.  相似文献   

7.
Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy’s Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.  相似文献   

8.
Few studies have examined the molecular to micron-scale interactions between dissimilatory Fe(III)-reducing bacteria and poorly crystalline Fe(III) phases which are frequently the most bioavailable Fe(III) sources in the subsurface. Here we describe methods for analysing these interactions using a range of chemical and spectroscopic techniques. Glass slides were coated with a synthetic poorly crystalline Fe(III) phase and then incubated in the presence of the Fe(III)-reducing bacterium Geobacter sulfurreducens and a suitable growth medium. Growth on the Fe(III)-coating was observed via cell staining and environmental scanning electron microscopy while microbial Fe(III) reduction was quantified using a colorimetric assay. However, following microbial reduction, Fe(II) could not be detected on the slide surface using X-ray photoelectron spectroscopy. Fe(II)-coated control slides showed that the mineral surface was not re-oxidised during handling or analysis. Further experiments intended to demonstrate removal of Tc(VII) and Cr(VI) from solution via abiotic reduction mediated by biogenic Fe(II) on the slide surface resulted in far lower levels of Tc(VII) and Cr(VI) reduction than expected. These data may indicate that the electrons transferred from G. sulfurreducens to poorly crystalline Fe(III) involves the deeper mineral structure, so that Fe(II) phases are not detectable on the surface. The environmental implications of this hypothesis are discussed.  相似文献   

9.
Overthelastfewdecadesenvironmentalcontaminationwithheavymetalshasincreaseddrastically .Heavymetalsfoundinwastewatersareharmfultotheenvironmentandtheireffectsonbiolo gicalsystemareverysevere.Anefficientandcheaptreatmentfortheirremovalandreuseofspentmetalsfromwastewaterneedstobedeve loped .Theremovaloftoxicmetalsfromtheenvironmentbymi croorganismshaspotentialasaneffectivemeansofremediatingheavymetalswastes.Microbe basedtechnologiescanprovideanalternativetoconventionalmethodsformetalremoval[1 ] .…  相似文献   

10.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

11.
Hexavalent chromium, a carcinogen and mutagen, can be reduced to Cr(III) by Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. This study examined Cr(VI) reduction by immobilized cells of the two strains in a common solution matrix using various entrapment matrices. Chitosan and PVA-borate beads did not retain integrity and supported low or no reduction of Cr(VI) by the cells. A commercial preparation (Lentikats) was stable but also did not support Cr(VI) reduction. K-carrageenan beads were stable in batch suspensions but gel integrity was lost after only 5 h in a flow-through system in the presence of 100 microM Cr(VI). The best immobilization matrices were agar and agarose, where the initial rates of reduction of Cr(VI) (from 500 microM solution) for D. vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776 were 127 (agar) and 130 (agarose), and 15 (agar) and 12 (agarose) nmol h(-1) mg dry cell wt(-1), respectively. The higher removal of Cr(VI) by D. vulgaris was also seen in 14-mL packed-bed flow-through columns, where, at a flow rate of 2.4 mL h(-1), the percentage removal of Cr(VI) was approximately 95% and 60% for D. vulgaris and Microbacterium sp., respectively (agar-immobilized cells). The Cr(VI) reducing activities of D. vulgaris and Microbacterium sp. were lost after 159 and 140 h, respectively. Examination of the beads for structural integrity within the columns in situ using magnetic resonance imaging after 24 and 100 h of continuous operation against Cr(VI) (with negligible Cr retained within the columns) showed that agar beads were more stable with time. The most appropriate system for development of a continuous bioprocess is thus the use of D. vulgaris NCIMB 8303 immobilized in an agar gel matrix.  相似文献   

12.
This study compares mineralization in permeable silicate and carbonate sands in the shallow shelf of the Gulf of Aqaba. From July 1999 to March 2000, we monitored concentrations of inorganic nutrients in water and pore water at two neighboring sites, one dominated by silicate, the other by carbonate sand. Although the carbonate was coarser than the quartz sand, organic matter, dissolved inorganic nitrogen (DIN), and ortho-phosphate concentrations in the biogenic carbonate sediment always exceeded those in the terrigenic silicate sands (factor 1.5–2.0 for organic matter, 1.7–14.0 for nutrients). Higher nutrient concentrations in the water column during winter months caused increases in pore-water nutrient concentrations in both sediments down to 10 cm depth with no significant delay, emphasizing the effect of advective transport of solutes and particles into permeable sands. An experiment was conducted where sieved clean quartz and carbonate sands of same grain size (250–500 µm) were incubated in-situ. Although exposed to the same water and boundary current conditions, the sieved carbonate sand accumulated more organic matter and developed higher nutrient concentrations than the incubated silicate sediment. We conclude that the mineralogical characteristics of the carbonate sand (higher porosity, sorption capacity and pH buffer capacity) enhance the filtration capacity, and the biocatalytic conversion efficiency relative to the smooth crystalline quartz grains.  相似文献   

13.
T. Hara  Y. Sonoda 《Plant and Soil》1979,51(1):127-133
Summary Cabbage plants were grown for 55 days with a nutrient solution containing 1 and 10 ppm of V, Cr(III), Cr(VI), Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg(I), orHg(II). A comparison of the plant growth and chemical analysis revealed that Cr(VI), Cu, Cd, and Hg(II) in the solution are most toxic to the plant growth (hence detrimental to the cabbage-head formation) and Mn, Fe, and Zn are less toxic than other heavy metals, and that Mn, Zn, Co, Ni, and Cd and translocated into all the plant organs while V, Cr(III), Cr(VI), Fe, Cu, Hg(I), and Hg(II) are accumulated in the roots.  相似文献   

14.
Cr(VI) is a toxic environmental pollutant. To determine the potential role of microbes towards chromate bioremediation, two bacterial strains, E1 and E4, that could tolerate Cr(VI) at levels up to 2250 μg ml?1 were isolated from the soil of a tannery. They were identified as Exiguobacterium sp. To estimate the removal of Cr(VI) using immobilized bacterial cells, 2% sodium alginate and 2.5% agar were used as immobilizing matrices. In the case of sodium alginate, 89% and 93% of Cr(VI) removal by E1 and E4, respectively, were observed. When agar beads were used as an immobilizing matrix, removal was recorded as 39% and 48% for E1 and E4, respectively. Removal of Cr(VI) was also estimated in sterile and nonsterile tannery effluent. More Cr(VI) removal was noted in the nonsterile effluent than in the sterile effluent. The maximum uptake of Cr(VI) of bound cells of E1 and E4 was found to be 17.54 and 20.04 μg ml?1, respectively. Fourier transform infrared (FTIR) spectra of cells of E4 with Cr(VI), without Cr(VI), and immobilized cells depicted several absorption peaks, mainly for P?OH group, C?H bending, C?O bond, and amide II groups, reflecting the complex nature of the bacterial cells and the contribution of these functional groups to the Cr(VI) binding process.  相似文献   

15.
A moderately thermophilic, facultatively anaerobic bacterium capable of reducing Cr(VI) (strain SKC1) was isolated from municipal sewage. Based on the analysis of the 16S rRNA gene nucleotide sequence and DNA-DNA hybridization data, strain SKC1 was identified as a representative of the species Bacillus thermoamylovorans. B. thermoamylovorans SKC1 is capable of reducing chromate with L-arabinose as an electron donor with an optimum at 50°C and neutral pH. The culture is able to reduce Cr(VI) at its initial concentration in the medium of up to 150 mg/l. In addition to chromate, strain SKC1 is capable of reducing selenite and tellurite, as well as soluble forms of Fe(III). It was shown that Cr(VI), Te(IV), and Se(IV) exert a bacteriostatic effect on strain SKC1, and the reduction of these anions performs the detoxification function. This is the first communication on the reduction of chromate, selenite, tellurite, and soluble Fe(III) species by a culture of thermophilic bacilli.  相似文献   

16.
Aim:  Characterization of an anaerobic thermophilic bacterium and subcellular localization of its Cr(VI)-reducing activity for potential bioremediation applications.
Methods and Results:  16S rRNA gene sequence-based analyses of bacterial strains isolated from sediment samples of a Bakreshwar (India) hot spring, enriched anaerobically in iron-reducing medium, found them to be 86–96% similar to reported Thermoanaerobacter strains. The most efficient iron reducer among these, BSB-33, could also reduce Cr(VI) at an optimum temperature of 60°C and pH 6·5. Filtered culture medium could reduce Cr(VI) but not Fe(III). Cell-free extracts reduced Cr(VI) inefficiently under aerobic conditions but efficiently anaerobically. Fractionation of the cell-free extracts showed that chromium reduction activity was present in both the cytoplasm and membrane.
Conclusions:  BSB-33 reduced Fe(III) and Cr(VI) anaerobically at 60°C optimally. After fractionation, the reducing activity of Cr(VI) was found in both cytoplasmic and membrane fractions.
Significance and Impact of the Study:  To the best of our knowledge, this is the first systematic study of anaerobic Cr(VI) reduction by a gram-positive thermophilic micro-organism and, in contrast to our results, none of the earlier reports has mentioned Cr(VI)-reducing activity to be present both in the cytoplasm and membrane of an organism. The strain may offer itself as a potential candidate for bioremediation.  相似文献   

17.
In this report, possible utilization of a chromium-reducing bacterial strain Cellulosimicrobium cellulans KUCr3 for effective bioremediation of hexavalent chromium (Cr(VI))-containing wastewater fed with tannery effluents has been discussed. Cr(VI) reduction and bioremediation were found to be related to the growth supportive conditions in wastewater, which is indicative of cell mass dependency for Cr(VI) reduction. Cr(VI) reduction was determined by measuring the residual Cr(VI) in the cell-free supernatant using colorimetric reagent S-diphenylcarbazide. Nutrient availability and initial cell density showed a positive relation with Cr(VI) reduction, but it was inhibited with increasing concentration of Cr(VI) under laboratory condition. The optimum temperature and pH for effective Cr(VI) reduction in wastewater were found to be 35°C and 7.5, respectively. The viable cells of KUCr3 were successfully entrapped in an agarose bead that was used in continuous column and batch culture for assaying Cr(VI) reduction. In packed bed column (continuous flow) experiment, approximately 25% Cr(VI) reduction occurred after 144 h. Cr(VI) was almost 75% and 52% reduced at concentrations of 0.5 mM and 2 mM Cr(VI), respectively, after 96 h in batch culture experiment in peptone-yeast extract-glucose medium, whereas it could decrease the Cr(VI) content up to 40% from the water containing tannery waste. This study suggests that KUCr3 could be used as a candidate for possible environmental clean up operation with respect to Cr(VI) bioremediation.  相似文献   

18.
Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. This study assessed the reduction of Cr(VI) by intact cells and a cell-free extract (CFE) of an actinomycete, Arthrobacter crystallopoietes (strain ES 32), isolated from soil contaminated with dichromate. Both intact cells and CFE of A. crystallopoietes, displayed substantial reduction of Cr(VI). Intact cells reduced about 90% of the Cr(VI) added within 12 h and Cr(VI) was almost completely reduced after 24 h. The K M and V max of Cr(VI) bioreduction by intact cells were 2.61 μM and 0.0142 μmol/min/mg protein, respectively. Cell-free chromate reductase of the A. crystallopoietes (ES 32) reduced hexavalent chromium at a K M of 1.78 μM and a V max of 0.096 μmol/min/mg protein. The rate constant (k) of chromate reduction was inversely related to Cr(VI) concentration and the half-life (t 1/2) of Cr(VI) reduction increased with increasing concentration. A. crystallopoietes produced a periplasmic chromate reductase that was stimulated by NADH. Results indicate that A. crystallopoietes ES 32 can be used to detoxify Cr(VI) in polluted sites, particularly in stressed environments.  相似文献   

19.
Bacterial strain 5bvl1, isolated from a chromium-contaminated wastewater treatment plant and identified as Ochrobactrum tritici, was resistant to a broad range of antibiotics, to Cr(VI), Ni(II), Co(II), Cd(II), and Zn(II), and was able to grow in the presence of 5% NaCl and within the pH range 4-10. Characterization showed that strain 5bvl1 could be considered a halotolerant and alkalitolerant microorganism resistant to high concentrations of Cr(VI). This strain was able to grow aerobically in up to 10 mmolxL(-1) Cr(VI). Cr(VI) resistance was independent of sulphate concentration. Under aerobic conditions strain 5bvl1 was also able to reduce high Cr(VI) concentrations (up to 1.7 mmolxL(-1)). Increasing concentrations of Cr(VI) in the medium lowered the growth rate of strain 5bv11 but the reduction in growth rate could not be directly correlated with the amount of Cr(VI) reduced. Unlike the type strain, which was only able to reduce Cr(VI), strain 5bvl1 was resistant to Cr(VI) and able to reduce it. Moreover, in strain 5bvl1, the rate and extent of Cr(VI)-reduction were higher than in the other strains of the genus Ochrobactrum. Ochrobactrum strain 5bvl1 resists high Cr(VI) concentrations and has a high Cr(VI)-reducing ability, making it a valuable tool in bioremediation.  相似文献   

20.
Columns were packed with clean quartz sand, sterilized, and inoculated with different strains of bacteria, which multiplied within the sand at the expense of a continuous supply of fresh nutrient medium. The saturated hydraulic conductivity (HCsat) of the sand was monitored over time. Among the four bacterial strains tested, one formed a capsule, one produced slime layers, and two did not produce any detectable exopolymers. The last two strains were nonmucoid variants of the first two. Only one strain, the slime producer, had a large impact on the HCsat. The production of exopolymers had no effect on either cell multiplication within or movement through the sand columns. Therefore, the HCsat reduction observed with the slime producer was tentatively attributed to the obstruction of flow channels with slime. Compared with the results with Arthrobacter sp. strain AK19 used in a previous study, there was a 100-fold increase in detachment from the solid substratum and movement through the sand of the strains used in this study. All strains induced severe clogging when they colonized the inlet chamber of the columns. Under these conditions, the inlet end was covered by a confluent mat with an extremely low HCsat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号