首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Here we report on nine microsatellite loci designed for Aspergillus sydowii, a widely distributed soil saprobe that is also the pathogenic agent of aspergillosis in Caribbean sea fan corals. Primers were tested on 20 A. sydowii isolates from the Caribbean, 17 from diseased sea fans and three from environmental sources. All loci were polymorphic and exhibited varying degrees of allelic diversity (three to nine alleles). Gene diversity (expected heterozygosity) ranged from 0.353 to 0.821. These primers will enable future research into the epidemiology of A. sydowii as an emergent infectious disease.  相似文献   

2.
Microbial diseases of corals and global warming   总被引:8,自引:0,他引:8  
Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.  相似文献   

3.
Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.  相似文献   

4.
Over the last 40 years, disease outbreaks have significantly reduced coral populations throughout the Caribbean. Most coral‐disease models assume that coral diseases are contagious and that pathogens are transmitted from infected to susceptible hosts. However, this assumption has not been rigorously tested. We used spatial epidemiology to examine disease clustering, at scales ranging from meters to tens of kilometers, to determine whether three of the most common Caribbean coral diseases, (i) yellow‐band disease, (ii) dark‐spot syndrome, and (iii) white‐plague disease, were spatially clustered. For all three diseases, we found no consistent evidence of disease clustering and, therefore, these diseases did not follow a contagious‐disease model. We suggest that the expression of some coral diseases is instead a two‐step process. First, environmental thresholds are exceeded. Second, these environmental conditions either weaken the corals, which are then more susceptible to infection, or the conditions increase the virulence or abundance of pathogens. Exceeding such environmental thresholds will most likely become increasingly common in rapidly warming oceans, leading to more frequent coral‐disease outbreaks.  相似文献   

5.
Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.  相似文献   

6.
Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious.  相似文献   

7.
Conservation, precaution, and Caribbean reefs   总被引:6,自引:0,他引:6  
Some authors argue that overfishing is an important reason that reef corals have declined in recent decades. Their reasoning is that overfishing removes herbivores, releasing macroalgae to overgrow and kill the corals. The evidence suggests, however, that global climate change and emergent marine diseases make a far greater contribution to coral mortality, and that macroalgae generally grow on the exposed skeletal surfaces of corals that are already dead. Macroalgal dominance, therefore, is an effect rather than a cause of coral mortality. Marine protected areas (MPAs), which are usually established to protect stocks of reef fish, foster populations of herbivorous fish under at least some circumstances. Increased herbivory can reduce algal cover, potentially accelerating the recovery of coral populations inside MPAs; however, establishing MPAs will have only a limited impact on coral recovery unless policymakers confront the accelerating negative effects of the global-scale sources of coral mortality.  相似文献   

8.
White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.  相似文献   

9.
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.  相似文献   

10.
The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are <5 m, small enough to be easily picked up by winds and dispersed over great distances. Aspergillosis is prevalent in the Caribbean, and it appears that this primarily terrestrial fungus has adapted to a marine environment. It has been proposed that dust storms originating in Africa may be one way in which potential coral pathogens are distributed and deposited into the marine environments of the Caribbean. To test the hypothesis that African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of non-dust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.  相似文献   

11.
Recent findings on the ecology, etiology and pathology of coral pathogens, host resistance mechanisms, previously unknown disease/syndromes and the global nature of coral reef diseases have increased our concern about the health and future of coral reef communities. Much of what has been discovered in the past 4 years is presented in this special issue. Among the significant findings, the role that various Vibrio species play in coral disease and health, the composition of the 'normal microbiota' of corals, and the possible role of viruses in the disease process are important additions to our knowledge. New information concerning disease resistance and vectors, variation in pathogen composition for both fungal diseases of gorgonians and black band disease across oceans, environmental effects on disease susceptibility and resistance, and temporal and spatial disease variations among different coral species is presented in a number of papers. While the Caribbean may still be the 'disease hot spot' for coral reefs, it is now clear that diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration.  相似文献   

12.
In search for microbiological indicators of coral health and coral diseases, community profiles of coral-associated epizoic prokaryotes were investigated because of their dual potential as a source of coral pathogens and their antagonists. In pairwise samples of visually healthy and diseased coral specimens from Bolinao Bay (Pangasinan, Philippines), mixed biofilm communities of ectoderm- and mucus-colonizing epizoic prokaryotes were compared using fluorescent in situ hybridization (FISH). Oligonucleotide probes targeted 13 phylotypes representing the main taxonomic groups of marine prokaryotes. Coral taxa tended to show specific community profiles. An attempt to separate the profiles of healthy and diseased specimens by applying principal component analysis (PCA) to a (nonselective) collection of corals (affected by various diseases) proved unsuccessful. On the other hand, separate PCA clusters were obtained from healthy and diseased corals belonging to a single species (Pocillopora damicornis) only. This cluster formation was dominated by principal component 1 with the genus Vibrio accounting for 18%. At the same time, reef-site-specific clusters were formed as well. At a reef site exposed to pollution from intensive fish cage (Chanos chanos) farming, healthy P. damicornis were mainly (93%) colonized by unicellular cyanobacteria. The formal calculation of diversity parameters suggested that evenness in particular was driven by both health status and reef site location. Despite the low resolution of taxonomic levels achieved with FISH probes targeting only large phylotype groups, significant differences between healthy and diseased corals and also between polluted and nonpolluted reef sites were observed.  相似文献   

13.
The role of microorganisms in coral health, disease and evolution   总被引:1,自引:0,他引:1  
Coral microbiology is an emerging field, driven largely by a desire to understand, and ultimately prevent, the worldwide destruction of coral reefs. The mucus layer, skeleton and tissues of healthy corals all contain large populations of eukaryotic algae, bacteria and archaea. These microorganisms confer benefits to their host by various mechanisms, including photosynthesis, nitrogen fixation, the provision of nutrients and infection prevention. Conversely, in conditions of environmental stress, certain microorganisms cause coral bleaching and other diseases. Recent research indicates that corals can develop resistance to specific pathogens and adapt to higher environmental temperatures. To explain these findings the coral probiotic hypothesis proposes the occurrence of a dynamic relationship between symbiotic microorganisms and corals that selects for the coral holobiont that is best suited for the prevailing environmental conditions. Generalization of the coral probiotic hypothesis has led us to propose the hologenome theory of evolution.  相似文献   

14.
Coral disease is a major factor in the global decline of coral reefs. At present, there are no known procedures for preventing or treating infectious diseases of corals. Immunization is not possible because corals have a restricted adaptive immune system and antibiotics are neither ecologically safe nor practical in an open system. Thus, we tested phage therapy as an alternative therapeutic method for treating diseased corals. Phage BA3, specific to the coral pathogen Thalassomonas loyana, inhibited the progression of the white plague-like disease and transmission to healthy corals in the Gulf of Aqaba, Red Sea. Only one out of 19 (5?%) of the healthy corals became infected when placed near phage-treated diseased corals, whereas 11 out of 18 (61?%) healthy corals were infected in the no-phage control. This is the first successful treatment for a coral disease in the sea. We posit that phage therapy of certain coral diseases is achievable in situ.  相似文献   

15.
Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.  相似文献   

16.
Emerging diseases have been responsible for the death of about 30% of corals worldwide during the last 30 years. Coral biologists have predicted that by 2050 most of the world's coral reefs will be destroyed. This prediction is based on the assumption that corals can not adapt rapidly enough to environmental stress-related conditions and emerging diseases. Our recent studies of the Vibrio shiloi/Oculina patagonica model system of the coral bleaching disease indicate that corals can indeed adapt rapidly to changing environmental conditions by altering their population of symbiotic bacteria. These studies have led us to propose the Coral Probiotic Hypothesis. This hypothesis posits that a dynamic relationship exists between symbiotic microorganisms and environmental conditions which brings about the selection of the most advantageous coral holobiont. Changing their microbial partners would allow the corals to adapt to changing environmental conditions more rapidly (days to weeks) than via mutation and selection (many years). An important outcome of the Probiotic Hypothesis would be development of resistance of the coral holobiont to diseases. The following evidence supports this hypothesis: (i) Corals contain a large and diverse bacterial population associated with their mucus and tissues; (ii) the coral-associated bacterial population undergoes a rapid change when environmental conditions are altered; and (iii) although lacking an adaptive immune system (no antibodies), corals can develop resistance to pathogens. The Coral Probiotic Hypothesis may help explain the evolutionary success of corals and moderate the predictions of their demise.  相似文献   

17.
Fungi in Porites lutea: association with healthy and diseased corals.   总被引:1,自引:0,他引:1  
Healthy and diseased scleractinian corals have been reported to harbour fungi. However, the species of fungi occurring in them and their prevalence in terms of biomass have not been determined and their role in coral diseases is not clear. We have found fungi to occur regularly in healthy, partially dead, bleached and pink-line syndrome (PLS)-affected scleractinian coral, Porites lutea, in the reefs of Lakshadweep Islands in the Arabian Sea. Mostly terrestrial species of fungi were isolated in culture from these corals. Hyaline and dark, non-sporulating fungi were the most dominant forms. Fungal hyphae extended up to 3 cm within the corals. Immunofluorescence detection using polyclonal immunological probes for a dark, initially non-sporulating isolate (isolate # 98-N28) and for a hyaline, non-sporulating fungus (isolate # 98-N18) revealed high frequencies of these in PLS-affected, dead and healthy colonies of P. lutea. Total fungal biomass accounted for 0.04 to 0.05% of the weight of corals in bleached corals and was higher than in PLS-affected and healthy colonies. Scanning electron microscopy revealed the presence of fungi within the carbonate skeleton and around polyps. Fungi appear to be a regular component of healthy, partially dead and diseased coral skeleton.  相似文献   

18.
Caribbean corals, including sea fans (Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best. Communicated by Biology Editor Dr Michael Lesser  相似文献   

19.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25 degrees C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29 degrees C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28 degrees C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

20.
Thermal stress and coral cover as drivers of coral disease outbreaks   总被引:5,自引:0,他引:5  
Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号