首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Reperfusion of cultured astrocytes with normal medium after exposure to H(2)O(2)-containing medium causes apoptosis. We have recently shown that ibudilast, which has been used for bronchial asthma and cerebrovascular disorders, attenuated the H(2)O(2)-induced apoptosis of astrocytes via the cGMP signaling pathway. This study examines the mechanism underlying the protective effect of cGMP. The membrane-permeable cGMP analog dibutyryl-cGMP attenuated the H(2)O(2)-induced decrease in cell viability, DNA ladder formation, nuclear condensation, reduction of the mitochondrial membrane potential, cytochrome c release from mitochondria, and caspase-3 activation in cultured astrocytes. These effects of dibutyryl-cGMP were almost completely inhibited by the cGMP-dependent protein kinase (PKG) inhibitor KT5823. In isolated rat brain mitochondria, cGMP in the presence of cytosolic extract from astrocytes inhibited the mitochondrial permeability transition pore (PTP) as determined by monitoring Ca(2+)-induced mitochondrial swelling. This ability of the cytosolic extract was inactivated by heat treatment and was mimicked by exogenous PKG. The effect of cGMP on the mitochondrial swelling was blocked by KT5823. The PTP inhibitors cyclosporin A and bongkrekic acid prevented the H(2)O(2)-induced decrease in cell viability and caspase-3 activation. These findings demonstrate that cGMP inhibits the mitochondrial PTP via the activation of PKG, and the prevention of mitochondrial dysfunction contributes to its anti-apoptotic effect.  相似文献   

3.
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.  相似文献   

4.
J A Wingrove  P H O'Farrell 《Cell》1999,98(1):105-114
A nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is thought to play an important role in mammalian vasodilation during hypoxia. We show that Drosophila utilizes components of this pathway to respond to hypoxia. Hypoxic exposure rapidly induced exploratory behavior in larvae and arrested the cell cycle. These behavioral and cellular responses were diminished by an inhibitor of NO synthase and by a polymorphism affecting a form of cGMP-dependent protein kinase. Conversely, these responses were induced by ectopic expression of NO synthase. Perturbing components of the NO/cGMP pathway altered both tracheal development and survival during prolonged hypoxia. These results indicate that NO and protein kinase G contribute to Drosophila's ability to respond to oxygen deprivation.  相似文献   

5.
An increase in cAMP and/or cGMP induces vasodilation which could be potentiated by endothelium or NO-donors. Cyclic nucleotide phosphodiesterases (PDE) are differently distributed in vascular tissues. cAMP hydrolyzing PDE isozymes in endothelial cells are represented by PDE2 (cGMP stimulated-PDE) and PDE4 (cGMP insensitive-PDE), whereas in smooth muscle cells PDE3 (cGMP inhibited-PDE) and PDE4 are present. To investigate the role of NO in vasodilation induced by PDE inhibitors, we studied the effects of PDE3- or PDE4-inhibitor alone and their combination on cyclic nucleotide levels, on relaxation of precontracted aorta and on protein kinase implication. Furthermore, the direct effect of dinitrosyl iron complex (DNIC) was studied on purified recombinant PDE4B. The results show that: 1) in endothelial cells PDE4 inhibition may up-regulate basal production of NO, this effect being potentiated by PDE2 inhibition; 2) in smooth muscle cGMP produced by NO inhibits PDE3 and increases cAMP level allowing PDE4 to participate in vascular contraction; 3) protein kinase G mediates the relaxing effects of PDE3 or PDE4 inhibition. 4) DNIC inhibits non competitively PDE4B indicating a direct effect of NO on PDE4 which could explain an additive vasodilatory effect of NO. A direct and a cGMP related cross-talk between NO and cAMP-PDEs, may participate into the vasomodulation mediated by cAMP activation of protein kinase G.  相似文献   

6.
7.
In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.  相似文献   

8.
It is generally accepted that G protein-coupled receptors stimulate soluble guanylyl cyclase (sGC)-mediated cGMP production indirectly, by increasing nitric oxide (NO) synthase activity in a calcium- and kinase-dependent manner. Here we show that normal and GH(3) immortalized pituitary cells expressed alpha(1)beta(1)-sGC heterodimer. Activation of adenylyl cyclase by GHRH, pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and forskolin increased NO and cGMP levels, and basal and stimulated cGMP production was abolished by inhibition of NO synthase activity. However, activators of adenylyl cyclase were found to enhance this NO-dependent cGMP production even when NO was held constant at basal levels. Receptor-activated cGMP production was mimicked by expression of a constitutive active protein kinase A and was accompanied with phosphorylation of native and recombinant alpha(1)-sGC subunit. Addition of a protein kinase A inhibitor, overexpression of a dominant negative mutant of regulatory protein kinase A subunit, and substitution of Ser(107)-Ser(108) N-terminal residues of alpha(1)-subunit with alanine abolished adenylyl cyclase-dependent cGMP production without affecting basal and NO donor-stimulated cGMP production. These results indicate that phosphorylation of alpha(1)-subunit by protein kinase A enlarges the NO-dependent sGC activity, most likely by stabilizing the NO/alpha(1)beta(1) complex. This is the major pathway by which adenylyl cyclase-coupled receptors stimulate cGMP production.  相似文献   

9.
Nitric oxide (NO) has been reported to be involved in the regulation of pseudopodia formation, phagocytosis and adhesion in macrophages through the reorganization of actin. In the present study, we directly separated the globular (G) and filamentous (F) actin from quiescent or NO-stimulated macrophage-like cell line RAW 264.7 cells in order to investigate the dynamic redistribution of actin pools. We also focused on the regulatory mechanisms of actin assembly, induced by NO and its possible subsequent signaling pathway. We showed that predominant G-actin coexisted with Triton X-100-insoluble filamentous (TIF) and Triton X-100-soluble filamentous actin in resting RAW 264.7 cells. The exogenous NO produced by (+/-)-(E)-2-[(E)-hydroxyimino]-6-methoxy-4-methyl-5-nitro-3-hexenamide (NOR1), the endogenous NO induced by lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma), and dibutyryl-cGMP increased the contents of TIF-actin in dose- and time-dependent manners and altered its morphology. The increase in the TIF-actin contents induced by NOR1 or LPS plus IFNgamma was efficiently blocked by the radical scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide and the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or the arginine analogue N(G)-monomethyl-L-arginine acetate, respectively. Preincubation with the calmodulin antagonist W-7 almost completely blocked the NO-induced TIF-actin increase and morphological change. On the other hand, preincubation with C3 transferase, an inhibitor of Rho protein, efficiently prevented the change in cell morphology, but had no effect on the TIF-actin increase. We postulate that cGMP and subsequent Ca(2+)/calmodulin may be key regulators of actin reorganization in NO-stimulated RAW 264.7 cells.  相似文献   

10.
cGMP-dependent protein kinase phosphorylates and inactivates RhoA   总被引:15,自引:0,他引:15  
Small GTPase Rho and cGMP/cGMP-dependent protein kinase (cGK) pathways exert opposing effects in specific systems such as vascular contraction and growth. However, the direct interaction between these pathways has remained elusive. We demonstrate that cGK phosphorylates RhoA in vitro at Ser188, the same residue phosphorylated by cAMP-dependent protein kinase. In HeLa cells transfected with constitutively active cGK (C-cGK), stress fiber formation induced by lysophosphatidic acid or V14RhoA was blocked. By contrast, C-cGK failed to inhibit stress fiber formation in cells transfected with mutant RhoA with substitution of Ser188 to Ala. C-cGK did not affect actin reorganization induced by Rac1 or Rho-associated kinase, one of the effectors for RhoA. Furthermore, C-cGK expression inhibited the membrane translocation of RhoA. Collectively, our findings suggest that cGK phosphorylates RhoA at Ser188 and inactivates RhoA signaling. The physiological relevance of the direct interaction between RhoA and cGK awaits further investigation.  相似文献   

11.
Immunologically activated astrocytes over-express matrix metalloproteinase-9 (MMP-9) and nitric oxide (NO). Because they have both beneficial and detrimental effects on the pathophyiological outcomes of several neurological diseases, their expression should be tightly regulated in the CNS. NO can modify the activity of other proteins either by directly modifying protein structure or regulating the expression of target proteins. In this study, we investigated the role of NO on the expression of MMPs in rat primary astrocytes. Rat primary astrocytes were stimulated with lipopolysaccharide (LPS), resulting in the over-expression of both MMP-9 and NO. Inhibition of NO production using nitric oxide synthase inhibitor, Nomega-nitro-l-arginine methyl ester (l-NAME), further increased MMP-9 expression, suggesting NO inhibits MMP-9 expression. In line with this observation, exogenous addition of NO donor, sodium nitroprusside (SNP) or S-nitroso-N-acetylpenicillamine (SNAP), inhibited MMP-9 expression in astrocytes. The inhibitory effect of NO was mediated by the down-regulation of mRNA and protein levels of MMP-9 but not by the direct modification of the enzymatic activity of MMP-9. The effect of NO on MMP-9 expression was mimicked by dibutyryl-cGMP and inhibited by PKG inhibitor KT5823, suggesting NO regulates MMP-9 expression via guanylate cyclase-PKG pathway. Finally, SNP or dibutyryl-cGMP inhibited the activation of ERK1/2 in LPS-stimulated astrocytes, which is an essential regulator of MMP-9 expression in astrocytes. The regulation of MMP-9 expression by NO may confer additional levels of fine-tuning of the level of MMP-9 during brain inflammatory conditions.  相似文献   

12.
Nitric oxide (NO) acts as a vasoregulatory molecule that inhibits vascular smooth muscle cell (SMC) proliferation. Studies have illustrated that NO inhibits SMC proliferation via the extracellular signal-regulated kinase (ERK) pathway, leading to increased protein levels of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. The ERK pathway can be pro- or antiproliferative, and it has been demonstrated that the activation status of the small GTPase RhoA determines the proliferative fate of ERK signaling, whereby inactivation of RhoA influences ERK signaling to increase p21Waf1/Cip1 and inhibit proliferation. The purpose of these investigations was to examine the effect of NO on RhoA activation/S-nitrosation and to test the hypothesis that inhibition of SMC proliferation by NO is dependent on inactivation of RhoA. NO decreases activation of RhoA, as demonstrated by RhoA GTP-binding assays, affinity precipitation, and phalloidin staining of the actin cytoskeleton. Additionally, these effects are independent of cGMP. NO decreases SMC proliferation, and gene transfer of constitutively active RhoA (RhoA63L) diminished the antiproliferative effects of NO, as determined by thymidine incorporation. Western blots of p21Waf1/Cip1 correlated with changes in proliferation. S-nitrosation of recombinant RhoA protein and immunoprecipitated RhoA was demonstrated by Western blotting for nitrosocysteine and by measurement of NO release. Furthermore, NO decreases GTP loading of recombinant RhoA protein. These findings indicate that inactivation of RhoA plays a role in NO-mediated SMC antiproliferation and that S-nitrosation is associated with decreased GTP binding of RhoA. Nitrosation of RhoA and other proteins likely contributes to cGMP-independent effects of NO. cell signaling; posttranslational modification; vascular disease  相似文献   

13.
Metabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes. The mGluR3 and group II agonists FN6 and LY354740 had similar effects on cGMP levels. The mGluR3 and group II antagonists beta-NAAG and LY341495 blocked these actions. Treatment with pertussis toxin inhibited the effects of NAAG on SNP-stimulated cGMP levels in rat cerebellar astrocytes but not in cerebellar neurons. These data support the conclusion that mGluR3 is also coupled to cGMP levels and that this mGluR3-induced reduction of cGMP levels is mediated by different G proteins in cerebellar astrocytes and neurons. We previously reported that this receptor is coupled to a cAMP cascade via a pertussis toxin-sensitive G protein in cerebellar neurons, astrocytes and transfected cells. Taken together with the present data, we propose that mGluR3 is coupled to two different G proteins in granule cell neurons. These data greatly expand knowledge of the range of second messenger cascades induced by mGluR3, and have implications for clinical conditions affected by NAAG and other group II mGluR agonists.  相似文献   

14.
Thy-1, a cell adhesion molecule abundantly expressed in mammalian neurons, binds to a beta(3)-containing integrin on astrocytes and thereby stimulates the assembly of focal adhesions and stress fibers. Such events lead to morphological changes in astrocytes that resemble those occurring upon injury in the brain. Extracellular matrix proteins, typical integrin ligands, bind to integrins and promote receptor clustering as well as signal transduction events that involve small G proteins and cytoskeletal changes. Here we investigated the possibility that the cell surface protein Thy-1, when interacting with a beta(3)-containing integrin on astrocytes, could trigger signaling events similar to those generated by extracellular matrix proteins. DI-TNC(1) astrocytes were stimulated with Thy-1-Fc immobilized on beads, and increased RhoA activity was confirmed using an affinity precipitation assay. The effect of various inhibitors on the cellular response was also studied. The presence of Y-27632, an inhibitor of Rho kinase (p160ROCK), a key downstream effector of RhoA, significantly reduced focal adhesion and stress fiber formation induced by Thy-1. Similar effects were obtained when astrocytes were treated with C3 transferase, an inhibitor of RhoA. Alternatively, astrocytes were transfected with an expression vector encoding fusion proteins of enhanced green fluorescent protein with either the Rho-binding domain of Rhotekin, which blocks RhoA function, or the dominant-negative N19RhoA mutant. In both cases, Thy-1-induced focal adhesion formation was inhibited. Furthermore, we observed that RhoA activity after stimulation with soluble Thy-1-Fc molecule was augmented upon further cross-linking using protein A-Sepharose beads. The same was shown by cross-linking beta(3)-containing integrin with anti-beta(3) antibodies. Together, these results indicate that Thy-1-mediated astrocyte stimulation depended on beta(3) integrin clustering and the resulting increase in RhoA activity.  相似文献   

15.
This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor l-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulates MAP kinase and NF-κB pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by l-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.  相似文献   

16.
17.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

18.
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.  相似文献   

19.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

20.
NO, via its second messenger cGMP, activates protein kinase GI (PKGI) to induce vascular smooth muscle cell relaxation. The mechanisms by which PKGI kinase activity regulates cardiovascular function remain incompletely understood. Therefore, to identify novel protein kinase G substrates in vascular cells, a λ phage coronary artery smooth muscle cell library was constructed and screened for phosphorylation by PKGI. The screen identified steroid-sensitive gene 1 (SSG1), which harbors several predicted PKGI phosphorylation sites. We observed direct and cGMP-regulated interaction between PKGI and SSG1. In cultured vascular smooth muscle cells, both the NO donor S-nitrosocysteine and atrial natriuretic peptide induced SSG1 phosphorylation, and mutation of SSG1 at each of the two predicted PKGI phosphorylation sites completely abolished its basal phosphorylation by PKGI. We detected high SSG1 expression in cardiovascular tissues. Finally, we found that activation of PKGI with cGMP regulated SSG1 intracellular distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号