首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extractable lipid composition of Mesorhizobium ciceri strain HAMBI 1750 grown in a phosphate sufficient medium (79CA) is reported. Cardiolipin (CL—27% of total lipids), phosphatidylglycerol (PG—18%), phosphatidylethanolamine (PE—1%), phosphatidylcholine (PC—30%) and two methylated derivatives of PE, i.e. phosphatidyl-N, N-dimethylethanolamine (DMPE—1%) and phosphatidyl-N-monomethylethanolamine (MMPE—1%), were found to make up the phospholipids of the analysed bacteria. Nonphosphorus, ornithine-containing lipid (OL—10%) was also detected. Polar groups of phospholipids were predominantly acylated with cis-11,12-methyleneoctadecanoyl (lactobacillic) residues, whereas the ornithine lipid contained mainly 3-hexadecanoyloxy-11,12-methyleneoctadecanoic acid bound to the α-amino group.  相似文献   

2.
L-929 cell surface membranes were incubated with S-adenosyl-l-[methyl-3H]-methionine and found to contain phosphatidylethanolamine: S-adenosylmethionine N-methyltransferase (phosphatidylethanolamine N-methyltransferase) activity. The enzyme or combination of enzymes responsible for this activity methylated endogenous phosphatidylethanolamine and its methylated derivatives to yield phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidylcholine. Maximum enzyme activity was expressed at pH 6.9, the reaction was not dependent on the presence of divalent cations, and exogenously added phospholipids did not stimulate the rate of reaction. Phospholipid methylation was inhibited by S-adenosyl-l-homocysteine and by local anaesthetic drugs such as chlorpromazine and tetracaine which partition into the lipid bilayer. Control experiments demonstrated that the surface membrane-associated methyltransferase activity was not due to contamination of surface membrane preparations with intracellular membranes. Surface membranes were found to have higher specific methyltransferase activities than whole L-cell homogenates or endoplasmic reticulum-enriched microsomes. The low rate of methyltransferase function expressed in vitro (approximately 1 pmol/min · mg protein) suggests that phospholipid methylation is not a major metabolic source of surface membrane phosphatidylcholine.  相似文献   

3.
Lipids of isolated neurons   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Lipids were extracted from neurons isolated from the lateral vestibular nucleus of ox (Bos taurus L.) and the ganglia of Aplysia punctata Cuvier. 2. Thin-layer chromatography of ox-neuron lipid revealed three major fractions corresponding to neutral lipid, phosphatidylethanolamine and phosphatidylserine. Part of the phosphatidylethanolamine was present as the plasmalogen. 3. Aplysia-neuron lipid contained neutral lipid, phosphatidylethanolamine and phosphatidylserine. Both phospholipids appeared to be present predominantly as the plasmalogen form. 4. The fatty acids of alkali-labile lipids of ox neurons were examined by gas–liquid chromatography. The major fatty acids were oleic acid, stearic acid and palmitic acid.  相似文献   

4.
Root and hypocotyl plasma membrane H+-ATPases were partially purified from deoxycholate-solubilized fractions of microsomes in mung bean (Vigna radiata L.) plants in the presence of glycerol. Certain properties of the ATPases and the manner in which phospholipids affect their activity were compared. Root ATPase was similar to hypocotyl ATPase with respect to substrate specificity, salt stimulation, pH dependence, Km for ATP·Mg2+ and inhibitor sensitivity, except for inhibition by vanadate. Both purified ATPases required phospholipids for their activation. Optimum concentrations of exogenously added phospholipid mixture (asolectin) to hypocotyl and root ATPase mixture were 0.03% and 1.0%, respectively. Root ATPase activation did not decrease if more than 1.0% asolectin was added. Qualitatively, phosphatidylserine and phosphatidylcholine brought about greater ATPase activation than other phospholipids. The hypocotyl ATPase was activated by phosphatidylinositol, phosphatidylserine and phosphatidylglycerol to a greater extent than the root ATPase. Root, but not hypocotyl ATPase, was slightly inhibited by the addition of phosphatidylinositol, phosphatidylethanolamine, and phosphatidic acid. The hypocotyl plasma membrane contained phosphatidylinositol + phosphatidylserine, phosphatidylglycerol and phosphatidic acid, and unsaturated fatty acids in greater abundance than the root plasma membrane. The differential activation of the plasma membrane ATPases may arise from these differences.  相似文献   

5.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

6.
Summary Auxin-induced cell elongation necessitates plasma membrane enlargement. The effect of auxin (10 M 2,4-dichlorophenoxyacetic acid) treatment on amount, composition, and rate of synthesis of plasma membrane lipids was examined. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [14C]acetate for times ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. The composition of individual plasma membrane lipids in elongating segments did not differ from the composition in treatment time-matched control segments, except that after longer auxin treatments, phospholipids had more unsaturated fatty acids. Plasma membrane phospholipid and free sterol content both increased in elongating segments. The relative proportion of sterols and phospholipids in the plasma membrane primarily depended on time after segment excision, for both auxin-treated and control segments. Auxin enhanced the rate of lipid incorporation into the plasma membrane by 6 h, and stimulated the synthesis of some phospholipids and sterols.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - GC gas chromatography - IAA indole-3-acetic acid - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PM plasma membrane - PS phosphatidylserine  相似文献   

7.
A respiratory-competent wild-type strain and a nuclear isogenic, mitochondrial DNA-less, petite mutant strain of Saccharomyces cerevisiae were grown under conditions of catabolite repression in batch cultures and under conditions of catabolite derepression in chemostat cultures. Subcellular fractions were isolated and the capacity of these fractions to incorporate sn-[2-3H]glycerol 3-phosphate into phospholipids was studied. Neither catabolite repression nor loss of mitochondrial DNA appreciably altered the total in vitro lipid synthesized by mitochondrial fractions during the incubation. Mitochondria isolated from catabolite-derepressed wild-type and petite cells had approximately the same specific activity in vitro for the synthesis of phosphatidylinositol. phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, and neutral lipids. Mitochondria isolated from the petite cells retained the capacity to synthesize phosphatidylglycerol and diphosphatidylglycerol, although the synthesis of these phospholipids was far less extensive than that by the mitochondria isolated from the wild-type cells. In both cases, mitochondria prepared from catabolite-repressed cells synthesized a greater proportion of phosphatidylserine than did mitochondria from catabolite-derepressed cells. The proportions of phospholipid species synthesized in vitro by the microsomal fractions studied were not grossly affected by catabolite repression or loss of mitochondrial DNA.  相似文献   

8.
The cis-isomer of parinaric acid, a naturally occurring C-18 polyene fatty acid, was incubated with brain subcellular fractions and the polarization of fluorescence increased in a time dependent manner. Greatest increases occurred in synaptosomal and microsomal membranes. This increase in polarization of fluorescence was found with the cis, but not the trans, isomer of parinaric acid and required Mg2+ or Ca2+ and was stimulated by coenzyme A and ATP. Synaptosomes were incubated with cis-parinaric acid and lipids were extracted and examined by high performance liquid chromatography. The highest incorporations of cis-parinaric acid were found in phosphatidylcholine (71%) and phosphatidylethanolamine (20%) while only traces were found in phosphatidylserine and phosphatidylinositol. [3H]Oleic acid was also incorporated into membrane phospholipids and unlabeled oleic acid blocked incorporation of cis-parinaric acid. It is proposed that cis-parinaric acid, like fatty acids normally found in brain, is incorporated into membrane phospholipids by an acyl-CoA acyltransferase. The presence of this enzyme in nervous tissue may make it possible to easily introduce fluorescent fatty acid probes into membrane phospholipids and to thereby facilitate study of membrane-mediated processes.  相似文献   

9.
Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism   总被引:132,自引:89,他引:43  
The nature and quantity of the phospholipids of Salmonella typhimurium and Escherichia coli K-12 have been examined. The main classes of phospholipids, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin have been completely characterized. Four minor compounds have been detected: phosphatidylserine, phosphatidic acid, and two partially characterized lipids. The phospholipid composition of the two organisms is quite similar, the only difference is the absence of one of the minor components and a decreased level of all components in E. coli. A study of the turnover of the phosphate in the phospholipids demonstrated no turnover in phosphatidylethanolamine, a slow turnover in phosphatidylglycerol, and a slow turnover in cardiolipin with, possibly, a transfer of phosphate from phosphatidylglycerol to cardiolipin. The amino acid phenylalanine is shown to become incorporated intact into lipidic compounds which have been partially characterized. Methods for the isolation and separation of lipids have been examined for their utility with these bacteria.  相似文献   

10.
Lipid Composition and Metabolism of Volvox carteri   总被引:2,自引:2,他引:0       下载免费PDF全文
The membrane structural lipids of somatic cells and gonidia isolated from Volvox carteri f. nagariensis spheroids have been characterized. The principal polar lipid components of both cell types are sulfoquinovosyl diglyceride, mono- and digalactosyl diglyceride, phosphatidylglycerol, phosphatidylethanolamine, and 1(3), 2-diacylglyceryl-(3)-O-4′-(N,N,N,-trimethyl)homoserine. Light-synchronized cultures of spheroids were shown to incorporate [14C]bicarbonate, [35S]sulfate, [14C]palmitic acid, and [14C]lauric acid into complex lipids. [14C]Palmitic acid was incorporated mainly into diacylglyceryltrimethylhomoserine and was not significantly modified by elongation or desaturation. In contrast, [14C]lauric acid was incorporated into a wider variety of complex lipids and was also converted into longer chain saturated and unsaturated fatty acids. Volvox is a promising system for studying the role of membranes in algal cellular differentiation.  相似文献   

11.
It is generally recognized nowadays that active lipid metabolism takes place in the nucleus of a mammalian cell. Experimental data testify to the biosynthesis of polyphosphoinositides and phosphatidylcholine and reveal corresponding enzymes within nuclei of mammalian cells. These findings suggest that lipidmediated signaling pathways in nuclei operate independently of lipid-mediated regulatory mechanisms functioning in membranes and cytosol. To explore the pathways of intranuclear lipid biosynthesis, we studied incorporation of 2-14C-acetate into lipids of cytosol and isolated nuclei of rat thymus cells after separate and combined incubation with the labeled precursor. The most efficient incorporation of 2-14C-acetate into lipids (cholesterol, free fatty acids, and phospholipids) was observed in a reaction mixture containing cytosol. When the reaction mixture contained only nuclei, incorporation of the radioactive precursor into lipids also took place, but specific radioactivity of the lipids was essentially lower than in the cytosol. In both cases, 2-14C-acetate incorporated into phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cardiolipin. Phosphatidylcholine, the most abundant membrane phospholipid, demonstrated the lowest radioactivity, which was significantly lower than that of phosphatidylethanolamine. Incorporation of newly synthesized free fatty acids in nuclear phospholipids was inhibited, if nuclei were incubated with cytosol. As a result, radioactive free fatty acids were accumulated in nuclei, while in cytosol they were efficiently incorporated into phospholipids. The levels of phospholipids and cholesterol remained constant regardless of incubation protocol, while the overall yield of free fatty acids decreased after combined incubation of nuclear and cytosolic fractions or after incubation of cytosol without nuclei. Putative mechanisms underlying the appearance of radioactive lipids in isolated nuclei of thymus cells are discussed.  相似文献   

12.
Carbons from choline present in the phospholipids of Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
The phospholipid composition of Pseudomonas aeruginosa grown in a mineral medium with choline as the carbon source was: phosphatidylethanolamine, 71.6±1.4%; phosphatidylglycerol, 11.8±0.4%; diphosphatidylglycerol, 0.8±0.4%; phosphatidic acid, 2.4±0.6%; lysophosphatidylethanolamine, 1.6±0.3%; phosphatidylcholine 7.9±0.3%; lysophosphatidylcholine, 3.9±0.7%. The molar ratio between the acidic and the neutral phospholipids was 0.18. Radiolabeling experiments with [methyl-14C]choline or [1,2-14C]choline carried out in cell suspension from bacteria that were grown in the presence of choline as the sole carbon source demonstrated that the carbons of the N-methyl groups of choline contributed to the synthesis of fatty acids while the carbons comprising the backbone of choline were used for the synthesis of glycerol.  相似文献   

13.
It is demonstrated by direct measurement of surface radioactivity that the cationic polypeptide antibiotic polymyxin B is specifically adsorbed to negatively charged lipid monolayers. The latter attracted the following amounts of the biologically active mono-N[14C]acetylpolymyxin B derivative (PX): lipid A from Proteus mirabilis, 0.17; phosphatidic acid, 0.12; phosphatidylglycerol and phosphatidylserine, 0.11; dicetylphosphate, 0.107; sulfoquinovosyldiglyceride, 0.104; phosphatidylinositol and cardiolipin, 0.095; and phosphatidylethanolamine, 0.017 μg/cm2. Adsorption of PX to phosphatidylcholine, monogalactosyldiglyceride and stearylamine was almost or completely zero. Total lipids from Escherichia coli adsorbed 0.057 in comparison to 0.051 μg PX/cm2 of an artificial mixture of phosphatidylethanolamine/phosphatidylglycerol/cardiolipin in the proportions 75 : 25 : 5. The concentration of the surface active PX at the air/water interphase was 0.091 μg/cm2. These saturation surface concentrations of PXat lipid monolayers were reached at 1 μg/ml bulk concentrations in 2 mM NaCl/1 mM Tris · HCl, pH 7.2. They decreased with decreasing surface charge density of the adsorbing monolayer. In an experiment with cardiolipin/phosphatidylethanolamine mixtures it was shown that two molecules of cardiolipin induced adsorption of one molecule PX giving a 1 : 1 ratio with regard to positive and negative charges. This could be due to a similar charge density of about one charge per 40–50 Å2 in PX and lipid bilayers composed of phospholipids. The electrostatic PX-lipid interaction was severely inhibited by 10?2 and 10?1 M Ca2+ and Na+, respectively. It is discussed that the specificity of PX against Gram-negative bacteria is caused by the occurrence of lipid A, phosphatidylglycerol and cardiolipin at the cell surface of these microorganisms.  相似文献   

14.
The lipids of Acanthamoeba castellanii (Neff) consist of 52% neutral lipids and 48% polar lipids. Triglycerides account for 75% and free sterols for 17% of the neutral lipids. The major phospholipids are phosphatidylcholine (45%), phosphatidylethanolamine (33%), phosphatidylserine (10%), a phosphoinositide (6%), and diphosphatidylglycerol (4%). The phosphoinositide is unique in that it contains fatty acids, aldehyde, inositol, and phosphate in the ratio of 1.4:0.5:1.1, but it contains no glycerol. Sphingomyelin, cerebrosides, psychosine, and glycoglycerides were not detected, but small amounts of unidentified long chain bases and sugars are present. The rates of uptake of palmitate-1-14C and of its incorporation into glycerides and phospholipids were not affected by the phagocytosis of polystyrene latex beads. Although phagocytosis usually decreased the uptake by amebas of phosphate-32P, serine-U-14C, and inositol-2-3H, their subsequent incroporation into phospholipids was not demonstrably stimulated or inhibited by phagocytosis. Phagocytosis did seem to increase the incorporation into ameba phospholipids of phosphatidylcholine-1 ,2-14C but not that of phosphatidylethanolamine-1 ,2-14C. These experiments, in which the incorporation of radioactive precursors into total cell lipids was measured, do not, of course, eliminate the possibility that localized effects may occur.  相似文献   

15.
The incorporation of [5,6(n)-3H]prostaglandin A1 (PGA1) and [1-14C]oleic acid into membrane phospholipids of rat liver microsomes was studied. It was shown that PGA1 is incorporated into phospholipids in a much lesser degree than oleic acid. PGA1 is incorporated into phosphatidylethanolamine and, in a lesser degree, into phosphatidylcholine and phosphatidylinositol + phosphatidylserine. The exogenous cofactors of fatty acid acylation (ATP, CoA, Mg2+) exert no marked influence on the incorporation of PGA1 into the phospholipids. PGA1 interacts with isolated rat liver phospholipids; the PGA1-phospholipid conjugate formed is not destroyed in the course of one- or two-dimensional thin-layer chromatography. On the other hand, PGA1 binding to unsaturated phosphatidylcholines is strictly dependent on the phospholipid oxidation index. It is concluded that PGA1 incorporation into rat liver phospholipids is a result of interaction of PGA1 with peroxidized phospholipids.  相似文献   

16.
Rainbow trout leucocytes contain high levels of neutral lipid (about 70% of total lipid on a wt% basis) consisting of mostly triacylglycerol, free sterols and sterol esters (25%, 15% and 52% of neutral lipid, respectively). The phospholipids, separated by thin-layer chromatography, consisted predominantly of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine, each present at about 30% of the total phospholipid. Radiolabelling of the leucocytes for 1 h with 1 μCi (approx. 6 μM) [1−14C]20:4(n−6), [1−14C]20:5(n−3) or [1−14C]22:6(n−3) each gave similar uptake values (approx. 1 · 105 cpm/107 leucocytes). The incorporation into total phospholipids was highest for 22:6(n−3) and lowest for 20:4(n−6). A higher percentage of radiolabel from [1−14C]22:6(n − 3) was found incorporated into phosphatidylcholine and phosphatidylethanolamine as compared to that from [1−14C]20:4(n − 6) and [1−14C]20:5(n−3), while the reverse situation was found with phosphatidylinositol and phosphatidylserine. The relative rates of incorporation into the different phospholipid classes for all three fatty acids were in the order phosphatidylinositol > sphingomyelin > diphosphatidylglycerol > phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine. Calcium ionophore-challenge did not significantly alter the pattern of phospholipid radiolabel. Ionophore-challenge released large amounts of radiolabel, much of which was recovered after high-performance liquid chromatographic separation as free fatty acid/monohydroxy fatty acids, although only approx. 0.3% was recovered in leukotriene B4 and leukotriene B5 for the [1−14C]20:4(n−6) and [1−14C]20:5(n−3) labelled leucocytes, respectively. Other lipoxygenase products were also radiolabelled and tentatively identified as 20-carboxy-LTB4, 20-hydroxy-LTB4, 6-trans-LTB4, 6-trans-12-epi-LTB4, 6-trans-8-cis-12-epi-LTB4 and the corresponding LTB5 structures. No ‘6-series’ leukotrienes were produced from [1−14C]22:6(n−3), nor was there any evidence for the synthesis of ‘5-series’ leukotrienes via retroconversion of 22:6(n−3) to 20:5(n−3). This latter finding shows that, despite the preponderance of 22:6(n−3) in the membranes of trout leucocytes, this fatty acid is not a substrate for leukotriene generation.  相似文献   

17.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

18.
The reaction of trinitrobenzene sulphonic acid with amino phospholipids, and in particular phosphatidylethanolamine has been studied by the monolayer technique. Injection of trinitrobenzene sulphonic acid under a monolayer of amino phospholipid results in an increase in surface pressure. The rate and extent of the pressure change is greatly affected by the initial surface pressure, the fatty acid composition of the lipid, and the presence of other non-reactive lipids, especially negatively charged phospholipids.The extent of the reaction was measured with 32P-labelled phospholipids isolated from Bacillus subtilis. Only about 80% of the phosphatidylethanolamine in the monolayer could be converted to its trinitrophenyl derivative. In the presence of negatively charged phospholipids such as cardiolipin or phosphatidylglycerol, a further 20% decrease in the trinitrophenylation of phosphatidylethanolamine was found. The pressure increase occurring during trinitrophenylation could also be correlated with the extent of the reaction by comparison of the force-area curves of pure phosphatidylethanolamine, its trinitrophenyl derivative and mixtures of both compounds.The data may offer an explanation for the observation that incomplete labelling of amino phospholipids frequently occurs in natural membranes and furthermore indicate that the use of chemical labelling techniques in the study of lipid asymmetry in biological membranes must be approached with great caution.  相似文献   

19.
The polar lipids of the anaerobic bacterium Clostridium tetani, the causative agent of tetanus, have been examined by two-dimensional thin layer chromatography, ESI mass spectrometry, and NMR spectroscopy. Plasmalogen and di- and tetra-acylated species of phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and N-acetylglucosaminyl diradylglycerol were the major lipids present in most strains examined except for strain ATCC 10779, the parent of strain E88, the first C. tetani strain to have its genome sequenced. This strain contained the same di- and tetra-acylated species but did not contain plasmalogens. All strains contained a novel derivative of N-acetylglucosaminyl diradylglycerol in which a phosphoethanolamine unit is attached to the 6’-position of the sugar, as judged by selective 31P-decoupled, 1H-detected NMR difference spectroscopy. The N-acetylglucosamine (GlcNAc) residue is presumably linked to the 3-positon of the diradylglycerol moiety, and it has the β-anomeric configuration. Very little plasmalogen component was detected by mass spectrometry in the precursors phosphatidic acid and phosphatidylserine, consistent with the idea that plasmalogens are formed from diacylated phospholipids at a late stage of phospholipid assembly in anaerobic clostridia.  相似文献   

20.
The composition of the neutral lipids and the phospholipids, and the role of glucose in the lipid metabolism of prepatent (12-day-old) Hymenolepis diminuta has been studied in vitro. Triglyceride was the most abundant lipid present; substantial amounts of sterol and sterol ester, diglyceride, free fatty acids and monoglycerides were also present. The phospholipids, which were qualitatively and quantitatively similar to those of other invertebrates and vertebrates, were, in order of abundance, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphoinositide, lysophosphatidylcholine, cardiclipin, phosphatidic acid, lysophosphatidic acid and phosphatidylglycerol. Small amounts of glucose carbon were incorporated into the lipids, principally the water soluble (glycerol) moiety of the triglycerides; only traces were incorporated into the phospholipids. Small amounts of glucose were converted to inositol and galactose. The principal pathway of triglyceride synthesis is suggested to be via the α-glycerophosphate-phosphatidic acid-diglyceride pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号