首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

2.
Gel electrophoresis and sucrose density gradient centrifugation techniques permitted the visualization for the first time of the ternary complex formed by the binding of cAMP to Mucor rouxii cAMP-dependent protein kinase holoenzyme. The addition of 0.5 M NaCl or histone plus ATP-Mg++, together with cAMP, dissociates the holoenzyme into free regulatory (R) and catalytic (C) subunits. At 4°C, cAMP bound to the holoenzyme is readily exchangeable with unlabeled cAMP (half life 2.5 min), while the nucleotide bound to the R subunit has a very slow exchange rate (half life 210 min). The amount of cAMP bound to R subunit is approximately twice the amount bound to holoenzyme at saturation.  相似文献   

3.
One of the intermediates involved in dissociation and reassociation of the subunits of the type II cAMP-dependent protein kinase has been characterized. This intermediate can be generated when the protein kinase is prepared from the isolated catalytic subunit (C) and the isolated regulatory subunit-[3H]cAMP complex (R2-[3H]cAMP4) by dialysis for 18 h followed by gel filtration. The intermediate, which could be separated from the holoenzyme and the isolated subunits by polyacrylamide gel electrophoresis, had an apparent molecular weight of 149,000, consistent with an R2C form. Following electrophoresis, measurements of R and bound nucleotide indicated that R2C was half-saturated with [3H]cAMP. The bound [3H]cAMP exhibited biphasic dissociation kinetics indicating that both types of cAMP binding sites were occupied. These findings suggested that the intermediate is R2C-cAMP2. This intermediate was not seen when the dialysis time was increased to 5 days, but could be observed when cAMP was added to the holoenzyme or when holoenzyme was mixed with R2cAMP4 and cAMP. The presence of two occupied cAMP binding sites on this intermediate suggests that there is minimal cooperativity between the two members of the regulatory subunit dimer, i.e. one member of the dimer binds 2 molecules of cAMP while the other binds C.  相似文献   

4.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

5.
Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme's regulatory subunits and is proximal to the active site cleft.  相似文献   

6.
In rabbit heart homogenates about 50% of the cAMP-dependent protein kinase activity was associated with the low speed particulate fraction. In homogenates of rat or beef heart this fraction represented approximately 30% of the activity. The percentage of the enzyme in the particulate fraction was not appreciably affected either by preparing more dilute homogenates or by aging homogenates for up to 2 h before centrifugation. The particulate enzyme was not solubilized at physiological ionic strength or by the presence of exogenous proteins during homogenization. However, the holoenzyme or regulatory subunit could be solubilized either by Triton X-100, high pH, or trypsin treatment. In hearts of all species studied, the particulate-bound protein kinase was mainly or entirely the type II isozyme, suggesting isozyme compartmentalization. In rabbit hearts perfused in the absence of hormones and homogenized in the presence of 0.25 M NaCl, at least 50% of the cAMP in homogenates was associated with the particulate fraction. Omitting NaCl reduced the amount of particulate-bound cAMP. Most of the particulate-bound cAMP was probably associated with the regulatory subunit in this fraction since approximately 70% of the bound nucleotide was solubilized by addition of homogeneous catalytic subunit to the particulate fraction. The amount of cAMP in the particulate fraction (0.16 nmol/g of tissue) was approximately one-half the amount of the regulatory subunit monomer (0.31 nmol/g of tissue) in this fraction. The calculated amount of catalytic subunit in the particulate fraction was 0.18 nmol/g of tissue. Either epinephrine alone or epinephrine plus 1-methyl-3-isobutylxanthine increased the cAMP content of the particulate and supernatant fractions. The cAMP level was increased more in the supernatant fraction, possibly because the cAMP level became saturating for the regulatory subunit in the particulate fraction. The increase in cAMP was associated with translocation of a large percentage of the catalytic subunit activity from the particulate to the supernatant fraction. The distribution of the regulatory subunit of the enzyme was not significantly affected by this treatment. The catalytic subunit translocation could be mimicked by addition of cAMP to homogenates before centrifugation. The data suggest that the regulatory subunit of the protein kinase, at least that of isozyme II, is bound to particulate material, and theactive catalytic subunit is released by formation of the regulatory subunit-cAMP complex when the tissue cAMP concentration is elevated. A model for compartmentalized hormonal control is presented.  相似文献   

7.
Cyclic AMP-dependent protein kinase from human erythrocyte plasma membranes was solubilized with Triton X-100, partially purified, and systematically characterized by a series of physicochemical studies. Sedimentation and gel filtration experiments showed that the 6.6 S holoenzyme had a Stokes radius (a) of 5.7 nm and was dissociated into native 4.8 S cAMP-binding (a = 4.5 nm) and 3.2 S catalytic (a = 2.6 nm) subunits. A minimum subunit molecular weight of 48,000 was established for the regulatory subunit by photoaffinity labeling with 8-azido[32P]cAMP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography. These data suggest an asymmetric tetrameric (R2C2) structure (Mr approximately equal to 160,000) for the membrane-derived enzyme. Membrane-derived protein kinase was characterized as a type I enzyme on the basis of its R subunit molecular weight, pI values (R, 4.9; holoenzyme, 5.75 and 5.95), dissociation by 0.5 M NaCl and 50 microgram/ml of protamine, 20-fold reduced affinity for cAMP in the presence of 0.3 mM MgATP, elution from DEAE-cellulose at low ionic strength, and kinetic and cAMP-binding properties. The physicochemical properties of the membrane protein kinase closely parallel the characteristics of erythrocyte cytosolic protein kinase I but are clearly dissimilar from those of the soluble type II enzyme. Moreover, regulatory subunits of the membrane-associated and cytosolic type I kinases were indistinguishable in size, shape, subunit molecular weight, charge, binding and reassociation properties, and peptide maps of the photoaffinity-labeled cAMP-binding site, suggesting a high degree of structural and functional homology in this pair of enzymes. In view of the predominant occurrence of particulate type II protein kinases in rabbit heart and bovine cerebral cortex, the present results suggest that the distribution of membrane-associated protein kinases may be tissue- or species-specific, but not isoenzyme-specific.  相似文献   

8.
The changes in backbone hydrogen/deuterium (H/2H) exchange in the regulatory subunit (R(I)alpha(94-244)) of cyclic AMP-dependent protein kinase A (PKA) were probed by MALDI-TOF mass spectrometry. The three naturally occurring states of the regulatory subunit were studied: (1) free R(I)alpha(94-244), which likely represents newly synthesized protein, (2) R(I)alpha(94-244) bound to the catalytic (C) subunit, or holoenzyme, and (3) R(I)alpha(94-244) bound to cAMP. Protection from amide exchange upon C-subunit binding was observed for the helical subdomain, including the A-helix and B-helix, pointing to regions adjacent to those shown to be important by mutagenesis. In addition, C-subunit binding caused changes in observed amide exchange in the distal cAMP-binding pocket. Conversely, cAMP binding caused protection in the cAMP-binding pocket and increased exchange in the helical subdomain. These results suggest that the mutually exclusive binding of either cAMP or C-subunit is controlled by binding at one site transmitting long distance changes to the other site.  相似文献   

9.
The cAMP binding domain of the regulatory subunit (R) of Mucor rouxii protein kinase A was cloned. The deduced amino acid sequence was highly homologous in sequence and in size to the corresponding region in fungal and higher eukaryotic regulatory subunits (47-54%), but particularly homologous (62%) to Blastocladiella emersonii, a fungus classified in a different phylum. Amino acids reported to be important for interaction with cAMP, for cooperativity between the two cAMP binding domains, in the general folding of the domain, and for interaction with the catalytic subunit were conserved in all the fungal sequences. Based on either sequence or functional behavior, the M. rouxii R subunit cannot be classified as being more similar to RI or RII of mammalian systems. The M. rouxii protein sequence was modeled using as template the coordinates of the crystallized bovine regulatory subunit type Ialpha. The quality of the model is good. The two backbones could be perfectly overlapped, except for two loop regions of high divergence. The alpha helix C of domain A, proposed to have a strong interaction with the catalytic subunit, contains a leucine replacing a basic residue (arginine or lysine) commonly found in RI or RII. The domains A and B of the M. rouxii regulatory subunit were overexpressed as fusion proteins with GST. GST domain B protein was inactive. GST domain A was active; the kinetic parameters of affinity toward cAMP analogs, site selectivity, and dissociation kinetics of bound cAMP were analogous to the properties of the domain in the whole regulatory subunit.  相似文献   

10.
31P nuclear magnetic resonance (NMR) has been used to study the 1-phosphorothioate analogues of 5-phosphoribosyl 1-diphosphate (P-Rib-PP). Comparison of the proton-decoupled spectra of 5-phosphoribosyl 1-O-(2-thiodiphosphate) (P-Rib-PP beta S) and the SP diastereomer of 5-phosphoribosyl 1-O-(1-thiodiphosphate) (P-Rib-PP alpha S) with the parent molecule revealed a characteristic large downfield chemical shift change for the resonance signal associated with the thiophosphate group (delta delta approximately 40-50 ppm) and an increase in the magnitude of the phosphate-thiophosphate spin-spin coupling constant (delta J alpha beta approximately 10 Hz). Both these changes are consistent with the observed effects of sulfur substitution on the behavior of the adenosine nucleotides, particularly ADP [Jaffe, E. K., & Cohn, M. (1978) Biochemistry 17, 652-657]. High-field 31P NMR has also been used to demonstrate the diastereomeric purity of P-Rib-PP alpha S (Sp diastereomer) and the greater lability of this analogue when compared with both P-Rib-PP beta S and P-Rib-PP. Sulfur substitution was found to cause a large decrease in the apparent pKa associated with the thiophosphate moiety of P-Rib-PP beta S (delta pKa approximately 1.4 units) and also to enhance the sensitivity of the thiophosphate chemical shift to protonation and, in particular, to Mg2+ binding, compared with P-Rib-PP. The potential application of the phosphorothioate analogues as probes of the reactions catalyzed by the phosphoribosyltransferase enzymes is discussed.  相似文献   

11.
Dissociation and reassociation of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases I and II were studied in intact AtT20 cells. Cells were stimulated with 50 microM forskolin to raise intracellular cAMP levels and induce complete dissociation of R and C subunits. After the removal of forskolin from the incubation medium cAMP levels rapidly declined to basal levels. Reassociation of R and C subunits was monitored by immunoprecipitation of cAMP-dependent protein kinase activity using anti-R immunoglobulins. The time course for reassociation of R and C subunits paralleled the loss of cellular cAMP. Total cAMP-dependent protein kinase activity and the ratio of protein kinase I to protein kinase II seen 30 min after the removal of forskolin was the same as in control cells. Similar results were seen using crude AtT20 cell extracts treated with exogenous cAMP and Mg2+. Our data showed that after removal of a stimulus from AtT20 cells inactivation of both cAMP-dependent protein kinase isoenzymes occurred by the rapid reassociation of R and C subunits to form holoenzyme. Our studies also showed that half of the type I regulatory subunit (RI) present in control cells contained bound cAMP. This represented approximately 30% of the cellular cAMP in nonstimulated cells. The cAMP bound to RI was resistant to hydrolysis by cyclic nucleotide phosphodiesterase but was dissociated from RI in the presence of excess purified bovine heart C. The RI subunits devoid of C may function to sequester cAMP and, thereby, prevent the activation of cAMP-dependent protein kinase activity in nonstimulated AtT20 cells.  相似文献   

12.
Digestion of scallop muscle membrane fractions with trypsin led to release of soluble polypeptides derived from the large cytoplasmic domain of a Na(+)-Ca(2+) exchanger. In the presence of 1 mm Ca(2+), the major product was a peptide of approximately 37 kDa, with an N terminus corresponding to residue 401 of the NCX1 exchanger. In the presence of 10 mm EGTA, approximately 16- and approximately 19-kDa peptides were the major products. Polyclonal rabbit IgG raised against the 37-kDa peptide also bound to the 16- and 19-kDa soluble tryptic peptides and to a 105-110-kDa polypeptide in the undigested membrane preparation. The 16-kDa fragment corresponded to the N-terminal part of the 37-kDa peptide. The conformation of the precursor polypeptide chain in the region of the C terminus of the 16-kDa tryptic peptide was thus altered by the binding of Ca(2+). Phosphorylation of the parent membranes with the catalytic subunit of protein kinase A and [gamma-(32)P]ATP led to incorporation of (32)P into the 16- and 37-kDa soluble fragments. A site may exist within the Ca(2+) regulatory domain of a scallop muscle Na(+)-Ca(2+) exchanger that mediates direct modulation of secondary Ca(2+) regulation by cAMP.  相似文献   

13.
J Bubis  S S Taylor 《Biochemistry》1985,24(9):2163-2170
Reconstituted porcine cAMP-dependent protein kinase type I was labeled with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) to study cyclic nucleotide binding and to identify amino acid residues that are either in or in close proximity to the cAMP binding sites. The photoaffinity analogue 8-N3cAMP behaved as cAMP itself with respect to cyclic nucleotide binding. For both cAMP and 8-N3cAMP, 2 mol of nucleotide was bound per mole of type I regulatory subunit monomer (RI), the apparent Kd's observed were approximately 10-17 nM on the basis of either Millipore filtration assays, equilibrium dialysis, or ammonium sulfate precipitation, Scatchard plots showed positive cooperativity, and (4) the Hill coefficients were approximately 1.5-1.6. After photolysis and addition of an excess of cAMP, approximately 1 mol of 8-N3cAMP/mol of RI monomer was covalently incorporated. Tryptic digestion of the labeled protein revealed that two unique tryptic peptides were modified. Proline-271 and tyrosine-371 were identified as the two residues that were covalently modified by 8-N3cAMP in RI. These results contrast with the type II regulatory subunit (RII) where 8-N3cAMP modified covalently a single tyrosine residue [Kerlavage, A. R., & Taylor, S. S. (1980) J. Biol. Chem. 255, 8483-8488]. RI contains two adjacent regions of sequence homology in the COOH-terminal fragment that binds two molecules of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Each protomer of the regulatory subunit dimer of cAMP-dependent protein kinase contains two tandem and homologous cAMP-binding domains, A and B, and cooperative cAMP binding to these two sites promotes holoenzyme dissociation. Several amino acid residues in the type I regulatory subunit, predicted to lie in close proximity to each bound cyclic nucleotide based on affinity labeling and model building, were replaced using recombinant techniques. The mutations included replacement of 1) Glu-200, predicted to hydrogen bond to the 2'-OH of cAMP bound to site A, with Asp, 2) Tyr-371, the site of affinity labeling with 8-N3-cAMP in site B, with Trp, and 3) Phe-247, the position in site A that is homologous to Tyr-371 in site B, with Tyr. Each mutation caused an approximate 2-fold increase in both the Ka(cAMP) and Kd(cAMP); however, the off-rates for cAMP and the characteristic pattern of affinity labeling with 8-N3-cAMP differed markedly for each mutant protein. Furthermore, these mutations affect the cAMP binding properties not only of the site containing the mutation, but of the adjacent nonmutated site as well, thus confirming that extensive cross-communication occurs between the two cAMP-binding domains. Photoaffinity labeling of the native R-subunit results in the covalent modification of two residues, Trp-260 and Tyr-371, by 8-N3-cAMP bound to sites A and B, respectively, with a stoichiometry of 1 mol of 8-N3-cAMP incorporated per mol of R-monomer (Bubis, J., and Taylor, S. S. (1987) Biochemistry 26, 3478-3486). A stoichiometry of 1 mol of 8-N3-cAMP incorporated per R-monomer was observed for each mutant regulatory subunit as well, even when 2 mol of 8-N3-cAMP were bound per R-monomer; however, the major sites of covalent modification were altered as follows: R(Y371/W), Trp-371; R(E200/D), Tyr-371, and R(F247/Y), Tyr-371.  相似文献   

15.
The regulatory subunit of cAMP-dependent protein kinase II (RII) from porcine heart was modified specifically and covalently using the photoaffinity reagent, 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP). In the presence of excess cAMP, the photo-dependent incorporation of 8-N3cAMP was abolished whereas excess AMP and ATP had no effect. A maximum incorporation of 0.5 mol of 8-N3cAMP was achieved/mol of regulatory subunit monomer (Mr = 55,000). This level of incorporation was obtained when the purified regulatory subunit was treated with urea prior to labeling to remove residual bound cAMP. When the regulatory subunit was labeled with radioactive 8-N3cAMP, cleaved with trypsin, and the tryptic peptides mapped in two dimensions, a single major radioactive peptide was observed. Chemical cleavage of the radioactively labeled RII with cyanogen bromide and subsequent chromatography on Sephadex G-50 also yielded a single major peak of radioactivity. The covalently modified cyanogen bromide peptide subsequently was purified to homogeneity using high performance liquid chromatography. Greater than 90% of the radioactivity that was incorporated into the regulatory subunit was recovered in this cyanogen bromide peptide which had the following sequence: Lys-Arg-Asn-Ile-Ser-His-Tyr (cAMP)-Glu-Glu-Cln-Leu-Val-Lys-Hse. When the Edman degradation of this peptide was carried out, the radioactivity derived from the 8-N3cAMP was released with the tyrosine residue at Step 7 identifying this residue as the specific site of attachment of the photoaffinity reagent.  相似文献   

16.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

17.
We have isolated and characterized the micronuclear gene encoding the regulatory subunit of cAMP-dependent protein kinase of the ciliated protozoan Euplotes octocarinatus, as well as its macronuclear version and the corresponding cDNA. Analyses of the sequences revealed that the micronuclear gene contains one small 69-bp internal eliminated sequence (IES) that is removed during macronuclear development. The IES is located in the 5'-noncoding region of the micronuclear gene and is flanked by a pair of tetranucleotide 5'-TACA-3' direct repeats. The macronuclear DNA molecule carrying this gene is approximately 1400 bp long and is amplified to about 2000 copies per macronucleus. Sequence analysis suggests that the expression of this gene requires a +1 ribosomal frameshift. The deduced protein shares 31% identity with the cAMP-dependent protein kinase type I regulatory subunit of Homo sapiens, and 53% identity with the regulatory subunit R44 of one of the two cAMP-dependent protein kinases of Paramecium. In addition, it contains two highly conserved cAMP binding sites in the C-terminal domain. The putative autophosphorylation site ARTSV of the regulatory subunit of E. octocarinatus is similar to that of the regulatory subunit R44 of Paramecium but distinct from the consensus motif RRXSZ of other eukaryotic regulatory subunits of cAMP-dependent protein kinases.  相似文献   

18.
Secretion of beta-endorphin from mouse pituitary AtT20 cells is stimulated by a variety of compounds that raise intracellular cAMP and Ca2+. To investigate the role of cAMP-dependent protein kinases in secretion, AtT20 cells were transfected with an expression vector coding for a regulatory (R) subunit of cAMP-dependent protein kinase containing mutations in both cAMP-binding sites. Expression of the mutant regulatory subunit in stable transformants (RAB cells) results in a dominant inhibition of cAMP-dependent protein kinase activity. Isoproterenol (1 microM) or analogs of cAMP stimulated beta-endorphin secretion from AtT20 cells, but failed to stimulate secretion in RAB cells expressing the mutant R subunit. Secretion in response to CRF (100 nM) was inhibited by 80% in these mutant clones, whereas the secretory response to vasoactive intestinal peptide (VIP; 100 nM) or phorbol ester (100 nM phorbol myristate acetate) was not inhibited by the R subunit mutation. Intracellular cAMP was elevated in response to CRF (11- to 15-fold), isoproterenol (5- to 10-fold), and VIP (4- to 8-fold) in RAB cells. Similar concentrations of VIP were required to evoke beta-endorphin secretion in either RAB cells or AtT20 cells. As with most secretagogues, VIP-induced secretion was inhibited in the presence of either EGTA or a voltage-sensitive Ca2+ channel antagonist, PN200-110. The secretory response to VIP was unaffected by down-regulation of protein kinase-C. These results suggest that CRF and isoproterenol work via cAMP-dependent protein kinase to activate beta-endorphin secretion, whereas VIP can act by a different mechanism that does not involve cAMP-dependent protein kinase or protein kinase-C.  相似文献   

19.
cAMP regulates the expression of several genes by activation of a promoter consensus sequence which functions as a cAMP-response element. Evidence indicated that this is accomplished via cAMP dissociation of cAMP-dependent protein kinase into its regulatory (R) and catalytic (C) subunits. Our investigations of the role of these two subunits in gene expression provide direct and quantitative evidence that the C subunit is required for cAMP stimulation of the cAMP-response element in the vasoactive-intestinal-peptide gene in rat pheochromocytoma cells. After cotransfection of a metallothionein-regulated C-subunit expression vector (pCEV) and a vasoactive-intestinal-peptide--chloramphenicol acetyltransferase construct containing a cAMP-response element, we could demonstrate expression of transfected C-alpha-subunit mRNA (truncated size 1.7 kb) by Northern blot and a concentration-dependent C subunit stimulation of chloramphenicol acetyltransferase activity. Basal activity was stimulated 12- and 50-fold by pCEV (30 micrograms), in the absence and presence, respectively, of Zn2+. Metallothionein-regulated expression of C was demonstrated by results that showed a 2-4-fold increase in chloramphenicol acetyltransferase activity in the presence versus the absence of 90 microM Zn2+. In contrast, overexpression of the R-II beta regulatory subunit did not stimulate chloramphenicol acetyltransferase activity, and R-II beta transfected together with C (ratio 2:1 and 4:1) inhibited the stimulation by the C subunit 70% and 90% respectively. Our results indicate that transfection of cAMP-dependent protein kinase subunits results in functional expression of both C-alpha and R-II beta subunits. Expression of the C subunit mediated cAMP-regulated gene expression but this expression could be inhibited by cotransfected R-II beta subunit, indicating intracellular reconstitution of the inactive holoenzyme of cAMP-dependent protein kinase.  相似文献   

20.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号