共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and Characterization of a New Gene of Escherichia Coli K-12 Involved in Outer Membrane Permeability 总被引:7,自引:0,他引:7 下载免费PDF全文
Using a genetic selection for mutations which allow large maltodextrins to cross the outer membrane of Escherichia coli in the absence of the LamB maltoporin, we have obtained and characterized two mutations that define a new locus of E. coli. We have designated this locus imp for increased membrane permeability. Mapping studies show that the imp gene resides at approximately 1.2 min on the E. coli chromosome. The mutations alter the permeability of the outer membrane resulting in increased sensitivity to detergents, antibiotics and dyes. The mutations are nonreverting and codominant. Genetic analysis of the mutations suggest that the imp gene is an essential gene. We describe a general cloning strategy that can be used to clone both dominant and recessive alleles. Using this technique, we have cloned the wild-type and mutant imp alleles onto a low copy number plasmid. 相似文献
2.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions. 相似文献
3.
J. M. Flórez-Castillo Mercedes Perullini Matias Jobbágy Herminsul de Jesús Cano Calle 《International journal of peptide research and therapeutics》2014,20(3):365-369
A family of Ib-AMP4 peptide analogues was obtained by solid phase synthesis, modifying the net charge and hydrophobicity of C-terminal domain by replacing certain amino acidic residues by arginine and tryptophan. Additionally, disulfide bonds were eliminated by replacing the cysteine residues by methionine, which resulted in a decrease in the number of synthesis byproducts, and consequently diminished the subsequent purification steps. The obtained peptides were purified by RP-HPLC and their molecular mass was determined by MALDI-TOF mass spectrometry. The peptide analogues (IC50 between 1 and 50 μM) presented a higher antibacterial activity against Escherichia coli K-12 than the native peptide (IC50 > 100 μM). The hemolytic activity of the peptide with the highest antibacterial efficacy presented no degradation of erythrocytes for a concentration of 1 μM that corresponds to its IC50 value. The results show that the synthesized peptides are good candidates for the treatment of diseases caused by E. coli. 相似文献
4.
The permeability of Escherichia coli cells for exogenous nucleodepolymerases has been studied by an immunoenzyme method. The enzyme ability to penetrate through the bacterial outer membrane and cell wall after 20 min of incubation with culture cells of delayed growth phase has been found. 相似文献
5.
Isolation of Temperature-Sensitive Membrane Mutants of Escherichia coli K-12 总被引:1,自引:1,他引:0 下载免费PDF全文
Johan F. Steenbakkers J. H. F. F. Broekman A. Kerkenaar P. G. De Haan 《Journal of bacteriology》1973,116(2):535-540
Mutants with impaired biosynthesis of unsaturated fatty acids or altered metabolism of the phospholipids were isolated at a rather high frequency from a set of temperature-sensitive lysis mutants. It is suggested that preselection for the lysis phenotype makes it possible to isolate several kinds of mutants affected in the integrity of the cytoplasmic membrane. 相似文献
6.
7.
8.
一新富含甘氨酸果蝇抗菌肽在大肠杆菌中的优化表达 总被引:3,自引:0,他引:3
目的:探索大肠杆菌原核表达系统制备具有生物功能的抗菌肽的最佳诱导条件。方法:将富甘氨酸果蝇抗菌肽基因的核心片段构建表达载体pET32a+中,经序列分析证实基因序列的正确性。在不同温度、不同时间和不同IPTG浓度进行诱导后,用15%SDS—PAGE检测融合蛋白的表达,发现有一条分子量约8kD的新增蛋白条带。结果:研究表明在37℃菌液OD值0.8时诱导7h蛋白表达量最高(IPTG0.7mmol/L,AMP100μg/ml,0.3%Glu)。结论:获得了抗菌肽表达的最佳诱导条件,为大量诱导产生该抗菌肽奠定了理论基础。 相似文献
9.
10.
In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F’-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10-12 CFU/recipient per hour. 相似文献
11.
Matthias Urfer Jasmina Bogdanovic Fabio Lo Monte Kerstin Moehle Katja Zerbe Ulrich Omasits Christian H. Ahrens Gabriella Pessi Leo Eberl John A. Robinson 《The Journal of biological chemistry》2016,291(4):1921-1932
Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. 相似文献
12.
B L Wanner 《Journal of molecular biology》1986,191(1):39-58
13.
Malvina Papanastasiou Georgia Orfanoudaki Marina Koukaki Nikos Kountourakis Marios Frantzeskos Sardis Michalis Aivaliotis Spyridoula Karamanou Anastassios Economou 《Molecular & cellular proteomics : MCP》2013,12(3):599-610
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.An in-depth understanding of cellular proteomes requires knowledge of protein subcellular topology, assembly in macromolecular complexes, and modification and degradation of poplypeptides. Escherichia coli, a model organism for many such studies, is by far the best studied. The genomes of strain K-12 derivatives MG1655 and W3110 have been sequenced (1, 2), and >75% of their genes have been functionally assigned (3). Almost 90% of the K-12 proteome has been identified experimentally, and >73% of its proteins have known structures (4, 5). Moreover, the genomes of another 38 E. coli strains have been determined (see EcoliWiki for details).In E. coli, like in all Gram-negative bacteria, the bacterial cell envelope comprises the plasma or inner membrane and the outer membrane, which are separated by the periplasmic space. The inner membrane encloses the cytoplasm and is a dynamic substructure. It harbors a wide variety of proteins that function in vital cell processes such as the trafficking of ions, molecules, and macromolecules; cell division; environmental sensing; lipid, polysaccharide, and peptidoglycan biosynthesis; and metabolism. Inner membrane proteins either fully span the lipid bilayer using one or more hydrophobic transmembrane helices (integral) or are bound either directly to phospholipid components or via protein–protein interactions to the surface of the membrane (peripheral) (6) (Fig. 1A). Peripheral inner membrane proteins exist on either side of the membrane and may be recruited in membrane-associated complexes on demand (7). Peripheral inner membrane proteins on the cytoplasmic side constitute a sub-proteome of central importance because of their interaction with the cytoplasmic proteome, the nucleoid, and most of the cell''s metabolism. Thanks to their soluble character and the nature of their interactions with the membrane (mostly electrostatic and moderate hydrophobic interactions (7)), peripheral inner membrane proteins can be extracted using high salt concentrations, extreme pH levels, or chaotropes without disrupting the lipid bilayer (8–11). In contrast, the solubilization of integral proteins requires amphiphilic detergents in order to displace the membrane phospholipids and maintain them as soluble in aqueous solutions (12).Open in a separate windowFig. 1.Bioinformatics and experimental workflow for characterizing peripheral inner membrane proteins.
A, schematic representation of the subcellular localization of the E. coli inner membrane peripherome. Protein topology assignment is based on the cellular compartment: A, cytoplasmic; B, integral inner membrane proteins; F1, peripheral inner membrane proteome; r, ribosome. B, schematic diagram for PIM protein annotation. 130 cytoplasmic and PIM E. coli K-12 proteins were downloaded from Uniprot (November 2010) (81) and EchoLOCATION (23). A set of bioinformatics tools was used to predict topologies and features of the unassigned and differently assigned proteins and to further validate existing protein annotations (see supplemental text). For the annotation of additional peripheral membrane proteins, the literature was extensively searched. Additional, other E. coli K-12 databases containing gene ontology annotations (84, 85) and protein homologies through BLAST (44) were employed. Homologues of curated E. coli K-12 proteins were identified in E. coli BL21(DE3) (supplemental Table S1A). C, preparation strategy for detecting the E. coli inner membrane peripherome via nanoLC-MS/MS. Inverted membrane vesicles (IMVs) were isolated and washed extensively with the indicated chemical agents to extract cytoplasmic and PIM proteins (“IMVs washed”), and then their surface was trypsinized (gray arrow). Following digestion, soluble peptides were analyzed via nanoLC-MS/MS. D, protein enrichment at different sample preparation conditions. Top: Relative percentage of proteins detected with the proteolysis approach. Proteins are classified here in three major categories: cytoplasmic (A), ribosomal (r), and peripheral (F1). The bar graphs indicate the percentage of proteins in each category relative to the proteins in other categories at a given sample preparation condition. Bottom: Heat maps showing relative quantities of individual proteins at different sample preparation conditions. Perseus (version 1.2.0.16), a part of the MaxQuant bioinformatics platform, was used for the construction of the heat map (86). A top-three label-free quantitative method was employed (27). Individual protein values across the various treatments are given in supplemental Table S3B.Unlike the cytoplasmic proteome of E. coli, which has been extensively characterized (13), its membrane sub-proteome is still poorly defined. Of 1133 predicted integral inner membrane proteins, only half were experimentally identified through proteomics approaches (14). These figures are constantly being re-evaluated,2 but most protein identifications appear robust. In contrast to integral inner membrane proteins, bioinformatics prediction of peripheral inner membrane proteins is currently not possible because they are not known to possess any specific features. Despite the occasional designation of partner proteins identified as peripheral in studies that target inner membrane complexes (15–21), no systematic effort has been undertaken to analyze the peripheral inner membrane proteome.Here we have used a multi-pronged strategy employing bioinformatics, biochemistry, proteomics, and complexomics to systematically determine the peripheral inner membrane proteome of E. coli. We focus exclusively on the peripheral inner membrane proteome that faces the cytoplasm, referred to hereinafter as PIM,1 and do not analyze peripheral inner membrane proteins residing on the periplasm. Manually curated and re-evaluated topology of the E. coli K-12 proteome was extrapolated to the non-K-12 strain BL21(DE3) (95% proteome homology to K-12) (22). By combining various biochemical treatments, we determined experimentally that several cytoplasmic proteins are also novel PIM proteins, and many of them participate in protein complexes associated with the membrane. Collectively, we demonstrate that a significant, previously unsuspected percentage of the expressed polypeptides constitute the PIM proteome. 相似文献
14.
Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. 总被引:5,自引:3,他引:5 下载免费PDF全文
S-Adenosylmethionine (AdoMet) plays a myriad of roles in cellular metabolism. One of the many roles of AdoMet in Escherichia coli and Salmonella typhimurium is as a corepressor of genes encoding enzymes of methionine biosynthesis. To investigate the metabolic effects of large reductions in intracellular AdoMet concentrations in growing cells, we constructed and examined mutants of E. coli which are conditionally defective in AdoMet synthesis. Temperature-sensitive mutants in metK, the structural gene for the S-adenosylmethionine synthetase (AdoMet synthetase) expressed in minimal medium, were constructed by in vitro mutagenesis of a plasmid-borne copy of metK. By homologous recombination, the chromosomal copy was replaced with the mutated metK gene. Both heat- and cold-sensitive mutants were examined. At the nonpermissive temperature, two such mutants had 200-fold-reduced intracellular AdoMet levels and required either methionine or vitamin B12 for growth. In the presence of methionine or vitamin B12, the mutants grew at normal rates even though the AdoMet levels remained 0.5% of wild type. A third mutant when placed at nonpermissive temperature had less than 0.2% of the normal AdoMet level and did not grow on minimal medium even in the presence of methionine or vitamin B12. All of these mutants grew normally on yeast-extract-based medium in which an alternate form of S-adenosylmethionine synthetase was expressed. 相似文献
15.
A functional update of the Escherichia coli K-12 genome 总被引:1,自引:0,他引:1
Serres MH Gopal S Nahum LA Liang P Gaasterland T Riley M 《Genome biology》2001,2(9):research0035.1-research00357
Background
Since the genome of Escherichia coli K-12 was initially annotated in 1997, additional functional information based on biological characterization and functions of sequence-similar proteins has become available. On the basis of this new information, an updated version of the annotated chromosome has been generated. 相似文献16.
A Naturally Occurring Novel Allele of Escherichia coli Outer Membrane Protein A Reduces Sensitivity to Bacteriophage 下载免费PDF全文
Michelle L. Power Belinda C. Ferrari Jane Littlefield-Wyer David M. Gordon Martin B. Slade Duncan A. Veal 《Applied microbiology》2006,72(12):7930-7932
A novel Escherichia coli outer membrane protein A (OmpA) was discovered through a proteomic investigation of cell surface proteins. DNA polymorphisms were localized to regions encoding the protein's surface-exposed loops which are known phage receptor sites. Bacteriophage sensitivity testing indicated an association between bacteriophage resistance and isolates having the novel ompA allele. 相似文献
17.
A 6.1-kb EcoRI DNA fragment containing the four structural genes (deoC, deoA, deoB, deoD) of the deoxyribonucleoside operon has been cloned into the plasmid pMFS53. By use of a unique, asymmetrically positioned HindIII site on the 6.1 kb insert, plasmids containing the deoC,deoA genes (pMFS50) or the deoB,deoD genes (pMFS55) have been constructed. Enzyme assays performed on extracts prepared from clones harboring pMFS53, pMFS50 or pMFS55 revealed that each clone possessed amplified deo enzyme levels and that the spectrum of enzyme amplification corresponded to the genetic composition of the plasmids carried by each clone. A plasmid (pMFS50l) having functional deoA, deoB and deoD genes but devoid of the deo regulatory region and a portion of the deoC structural gene has been isolated following treatment of BamHI cleaved pMFS53 and BAL31 nuclease. Comparison of the deo enzyme levels for clones harboring pMFS53 and pMFS501 suggest that plasmid pMFS53 possesses a functional deo regulatory region in addition to the four structural genes of the operon. 相似文献
18.
19.
LEDERBERG J 《Journal of bacteriology》1950,60(4):381-392
20.
Escherichia coli K-12 can utilize D-allose, an all-cis hexose, as a sole carbon source. The operon responsible for D-allose metabolism was localized at 92.8 min of the E. coli linkage map. It consists of six genes, alsRBACEK, which are inducible by D-allose and are under the control of the repressor gene alsR. This operon is also subject to catabolite repression. Three genes, alsB, alsA, and alsC, appear to be necessary for transport of D-allose. D-Allose-binding protein, encoded by alsB, is a periplasmic protein that has an affinity for D-allose, with a Kd of 0.33 microM. As was found for other binding-protein-mediated ABC transporters, the allose transport system includes an ATP-binding component (AlsA) and a transmembrane protein (AlsC). It was found that AlsE (a putative D-allulose-6-phosphate 3-epimerase), but not AlsK (a putative D-allose kinase), is necessary for allose metabolism. During this study, we observed that the D-allose transporter is partially responsible for the low-affinity transport of D-ribose and that strain W3110, an E. coli prototroph, has a defect in the transport of D-allose mediated by the allose permease. 相似文献