首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用Ferrell和Martin(1991)设计的测定印迹在PVDF膜上的蛋白激酶活性方法研究大豆叶片质膜蛋白激酶自身磷酸化反应活性,结果表明:与Mg-ATP相比,Mn-ATP是更有效的57KD蛋白激酶自身磷酸化反应底物;钙离子可以促进该激酶的自身磷酸化反应活性,而且EGTA可以显著降低它在SDS电泳中的迁移率,说明57KD蛋白激酶为依赖于钙的蛋白激酶;预磷酸化反应实验证明57KD蛋白激酶具有多个自身磷酸化反应位点,其分子的自身磷酸化状态可调性暗示这一激酶可能具有重要的生理功能。  相似文献   

2.
Previous reports from this laboratory and others have established that both the rabbit and human erythrocyte membranes contain multiple protein kinase and phosphate acceptor activities. We now report that these membranes also contain phosphoryl acceptor sites for the soluble cyclic AMP-dependent and -independent protein kinases from rabbit erythrocytes. The rabbit erythrocyte membrane, which does not contain a cyclic AMP-dependent protein kinase, has at least four polypeptides (Bands 2.1, 2.3, 4.5, and 4.8) which are phosphorylated in the presence of the soluble cyclic AMP-dependent protein kinases I, IIa, and IIb isolated from rabbit erythrocyte lysates. The resulting phosphoprotein profile is very similar to that obtained for the cyclic AMP-mediated autophosphorylation of human erythrocyte membranes. The activities of the soluble cyclic AMP-dependent protein kinases toward the membranes have been studied at several pH values. Although the substrate specificity of the three kinases is similar, polypeptide 2.3 appears to be phosphorylated to a greater extent by kinase IIa than by I or IIb. This occurs at all pH values studied. Also apparent is that the pH profile for membrane phosphorylation is different from that of histone phosphorylation. The phosphorylation of membrane proteins can also be catalyzed by the soluble erythrocyte casein kinases. These enzymes are not regulated by cyclic nucleotides and can use either ATP or GTP as their phosphoryl donor. Polypeptides 2.1, 2.9, 4.1, 4.5, 4.8, and 5 of both human and rabbit erythrocyte membranes are phosphorylated in the presence of GTP and the casein kinases. This reaction is optimal at pH 7.5. Experiments were performed to determine whether the phosphorylation of the membranes by the soluble and membrane-bound kinases is additive or exclusive. Our results indicate that after maximal autophosphorylation of the erythrocyte membranes, phosphoryl acceptor sites are available to the soluble cyclic AMP-dependent and -independent protein kinases. Furthermore, after maximal phosphorylation of the membranes with one type of soluble kinase, further 32P incorporation can occur as a result of exposure to the other type of soluble kinase.  相似文献   

3.
以大豆幼苗初生叶为材料研究了衰老过程中质膜蛋白激酶自磷酸化状态和催化活性的变化。结果发现质膜上一个57kD的蛋白激酶分子上有多个自磷酸化位点,而且自磷酸化反应能提高该酶催化组蛋白H1磷酸化的激酶活力。进一步的研究表明诱导衰老处理造成的57kD蛋白激酶自磷酸化状态的变化,可能对调节它在衰老过程中催化活性的变化起重要作用;而外源6-BA预处理则能够维持57kD蛋白激酶体内高自磷酸化状态,保持该激酶在衰老过程中的催化活力。对衰老和6-BA处理过程中质膜上39和47kD蛋白激酶自磷酸化状态变化的研究表明,这两种激酶可能参与大豆叶片对6-BA刺激信号的传导和/或应答反应过程。  相似文献   

4.
The regulation of sucrose-phosphate synthase (SPS) and nitrate reductase (NR) activities from mature spinach (Spinacia oleracea L.) leaves share many similarities in vivo and in vitro. Both enzymes are light/dark modulated by processes that involve, at least in part, reversible protein phosphorylation. Experiments using desalted crude extracts show that the ATP-dependent inactivation of spinach SPS and NR is sensitive to inhibition by glucose-6-phosphate. Also, a synthetic peptide homolog of the spinach SPS phosphorylation site inhibits the ATP-dependent inactivation of both enzymes with a similar concentration dependence. We have addressed the possibility that SPS and NR are regulated by the same protein kinase by partially purifying the protein kinases involved. Three unique kinase activities can be separated by anion-exchange and size-exclusion chromatography. Each peak of activity has a different substrate specificity. By gel filtration, they have apparent molecular masses of approximately 45, 60, and 150 kD. Additionally, the activities of the two smaller kinases are dependent on micromolar concentrations of Ca2+, whereas the 150-kD kinase is not. Finally, the 150-kD kinase has a subunit molecular mass of about 65 kD as determined by renaturing the kinase activity in situ following sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

5.
In GR mice, the induction of proliferative processes in mammary tumours with ovarian hormones (estrone and progesterone) is accompanied by the activation of phosphorylation of plasma membrane, cytosolic and nuclear proteins by endogenous protein kinases. The hormones stimulate tyrosine kinases of tumour cells whose activity is as high as 14.9-17.9% of the total phosphorylation in plasma membranes and 9.5-10.4% in cell nuclei. The ovarian hormones stimulate tyrosine kinases of tumour cells which phosphorylate proteins with Mr of 110-230 and 15 kD (plasma membranes), 170, 52 and 13 kD (cytosol) and 32 kD (nuclei) which are resistant to alkaline hydrolysis. Apart from tyrosine kinases, the ovarian hormones also stimulate serine and threonine protein kinases which seems to be due to the activation of protein kinase C and other protein kinases.  相似文献   

6.
The cellular distribution, membrane orientation, and biochemical properties of the two major NaOH-insoluble (integral) plasma membrane proteins of Euglena are detailed. We present evidence which suggests that these two polypeptides (Mr 68 and 39 kD) are dimer and monomer of the same protein: (a) Antibodies directed against either the 68- or the 39-kD polypeptide bind to both 68- and 39-kD bands in Western blots. (b) Trypsin digests of the 68- and 39-kD polypeptides yield similar peptide fragments. (c) The 68- and 39-kD polypeptides interconvert during successive electrophoresis runs in the presence of SDS and beta- mercaptoethanol. (d) The 39-kD band is the only major integral membrane protein evident after isoelectric focusing in acrylamide gels. The apparent shift from 68 to 39 kD in focusing gels has been duplicated in denaturing SDS gels by adding ampholyte solutions directly to the protein samples. The membrane orientation of the 39-kD protein and its 68-kD dimer has been assessed by radioiodination in situ using intact cells or purified plasma membranes. Putative monomers and dimers are labeled only when the cytoplasmic side of the membrane is exposed. These results together with trypsin digestion data suggest that the 39- kD protein and its dimer have an asymmetric membrane orientation with a substantial cytoplasmic domain but with no detectable extracellular region. Immunolabeling of sectioned cells indicates that the plasma membrane is the only cellular membrane with significant amounts of 39- kD protein. No major 68- or 39-kD polypeptide bands are evident in SDS acrylamide gels or immunoblots of electrophoresed whole flagella or preparations enriched in flagellar membrane vesicles, nor is there a detectable shift in any flagellar polypeptide in the presence of ampholyte solutions. These findings are considered with respect to the well-known internal crystalline organization of the euglenoid plasma membrane and to the potential for these proteins to serve as anchors for membrane skeletal proteins.  相似文献   

7.
A Triton X-100 extract from rat brain mitochondria was obtained using low detergent/protein ratio. From this extract a proteinaceous complex was purified; its molecular weight was as high as 880 kD. The complex contained both hexokinase and creatine kinase activity. When incorporated into phospholipid bilayer membranes, the complex formed a channel whose activity was different than the channel activity of purified porin isolated either by adsorption chromatography or by dissociation from protein complexes. A ligand of the mitochondrial benzodiazepine receptor (Ro5-4864) in submicromolar concentrations had an apparent influence on the kinetic behavior of enzymatic coupling of hexokinase and creatine kinase. It is suggested that the 880-kD complex is formed by mitochondrial contact sites. The role of the isolated protein complex in the formation of nonspecific permeability in mitochondria is discussed.  相似文献   

8.
A preliminary study has been carried out to investigate the effect of Rous sarcoma virus transformation on plasma membrane protein kinase activity in chick embryo fibroblasts. Enzyme activity was measured using an in vitro phosphorylation method employing [gamma-32P]ATP with isolated plasma membranes serving as the source of both protein kinase and protein substrate. In general, the enzymatic properties observed were similar to those of other known protein kinases. However, for maximal activity a marked dependence on high Mg2+ concentrations was noted. Evidence was obtained which showed that cyclic nucleotide-dependent protein kinases were present in membranes from normal cells, but none could be measured in preparations from transformed cells. In addition, transformation appeared to result in a slight increase in basal plasma membrane protein kinase activity.  相似文献   

9.
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.  相似文献   

10.
Acetylcholine receptor-rich membrane fragments purified from Torpedo marmorata electric organ were phosphorylated, in vitro, by endogenous protein kinases. The 40 000-Mr chain, which carries the acetylcholine receptor site, was never labelled; on the other hand, protein bands of apparent molecular weights 43 000, 50 000 and 66 000, which are present in the acetylcholine receptor-rich membranes, were repeatedly phosphorylated. The phosphorylation of these three peptides required the presence of divalent cations, such as Mg2+ or Mn2+, and was, in addition, stimulated up to 3--5-fold by K+. The effect of Na+ ions appeared less specific since Na+ ions reduced the labelling of all the polypeptides susceptible to phosphorylation. Cholinergic agonists and antagonists, local anesthetics and cyclic nucleotides did not affect the phosphorylation of the receptor-rich membranes. Phosphorylation selectively modified the solubilization of several polypeptides by nondenaturing detergents: phosphorylated 43 000-Mr, 50 000-Mr and 66 000-Mr polypeptides were solubilized at lower concentrations of detergent than their non-phosphorylated counterparts. Two-dimensional gels revealed the existence of a charge heterogeneity of the 40 000-Mr and 43 000-Mr chains. The microheterogeneity of the 43 000-Mr chain, but not that of the 40 000-Mr chain, might result from a selective phosphorylation of this particular chain.  相似文献   

11.
Previous studies from this laboratory have proposed that membrane-associated nucleoside diphosphate kinase (m-NDP kinase) may play a role in regulation of adenylate cyclase by channeling GTP, an essential cofactor of adenylate cyclase regulation, into GTP-binding protein (Gs) in a hormone-dependent manner. To understand the true role of m-NDP kinase, in the present study, the m-NDP kinase was solubilized and purified to apparent homogeneity from rat liver purified plasma membranes and characterized in comparison with the cytosolic enzyme purified from the same tissue (s-NDP kinase). Some physical properties determined were: molecular weight (monomer), 18,300; sedimentation coefficient (s20,w), 6.2 S; isoelectric point (pI), 6.0. These values and kinetic parameters of the m-NDP kinase were almost identical to those of the s-NDP kinase whose characteristics were more extensively studied. A peptide mapping study of the 125I-labeled m- and s-NDP kinases gave essentially identical patterns. Polyclonal antibodies against the s-NDP kinase, which also cross-reacted with the m-NDP kinase, were prepared. Immunoblotting studies with the affinity-purified antibodies revealed that the monomer molecular weight of the purified m- and s-NDP kinases was identical to the values of unpurified enzymes present in membranes and crude extract. These results demonstrate that the purified m-NDP kinase underwent no remarkable modification during solubilization and purification, and that the m- and s-NDP kinases are quite similar in protein structure, if at all different. The physiological relevance of the m-NDP kinase in relation to the adenylate cyclase system is discussed.  相似文献   

12.
Two protein kinases (EC 2.7.1.37) from rabbit and one from human erythrocyte membranes have been solubilized with 0.5 M NaCl. These enzymes have been partially purified by (NH4)2SO4 fractionation and gel filtration. The rabbit membrane enzymes have apparent Mr values of 100 000 and 30 000, as determined in the presence of 0.4 M NaCl. In the absence of salt, these enzymes aggregate into high molecular weight species. The kinase from human erythrocyte membranes has an apparent Mr of 30 000 and appears to have properties similar to those of the 30 000-dalton rabbit kinase. All three enzymes catalyze the phosphorylation of casein and phosvitin in salt-stimulated reactions. None of these enzymes appears to be related to cyclic AMP-dependent protein kinases.  相似文献   

13.
A preliminary study has been carried out to investigate the effect of Rous sarcoma virus transformation on plasma membrane protein kinase activity in chick embryo fibroblasts. Enzyme activity was measured using an in vitro phosphorylation method employing [γ-32P]ATP with isolated plasma membranes serving as the source of both protein kinase and protein substrate. In general, the enzymatic properties observed were similar to those of other known protein kinases. However, for maximal activity a marked dependence on high Mg2+ concentrations was noted. Evidence was obtained which showed that cyclic nucleotide-dependent protein kinases were present in membranes from normal cells, but none could be measured in preparations from transformed cells. In addition, transformation appeared to result in a slight increase in basal plasma membrane protein kinase activity.  相似文献   

14.
A protein kinase, associated with free cytoplasmic ribonucleoprotein particles (free dRNP) has been purified from mouse plasma cell tumours. This protein kinase is able to phosphorylate in vitro endogenous protein from free dRNP. Some characteristics of this protein kinase have been studied. This protein kinase behaves as being cyclic AMP independent. The properties of this protein kinase were compared with other protein kinases: soluble, ribosome-bound, and nuclear protein kinases. Although there are minor differences it is very similar to a ribosome-associated protein kinase from the plasma cell tumours.  相似文献   

15.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

16.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

17.
The soluble protein extract of soybean hypocotyl was autophosphorylated, the labeling products were analyzed by SDS-PAGE. A 18 kD protein band was intensely labeled when a relatively high concentration of calcium was present, meanwhile a weakly labeled 67 kD protein band was also observed. When the reaction time was prolonged to 15 or 30 min, the labeling intensity of them was weakened gradually and the labeled bands disappeared eventual ly from the autoradiograph. If the calcium chelater EGTA was added into the reaction sys tem, only 67 kD was phosphorylated with high intensity. When non-labeled ATP was added during the reaction process, 32p in the labeled proteins could be substituted gradually by Pi. This indicated that the reaction system was in a dynamic equilibrium of phosphorylation-de- phosphorylation. There were also data inferred that it was a calcium dependent process. Histon H1 could speed up the phosphorylation, suggesting that it was a suitable substrate for protein kinases in the extract. Findings support that 18 kD and 67 kD protein may be Ca2+ sensitive protein kinases that can be autophosphorylated. Their different responses to Ca2+ may make the calcium signal transduction controllable.  相似文献   

18.
Incubation of plasma membrane preparations from several tissues with [gamma-32P]ATP resulted in the phosphorylation of phosphatidylinositol as well as of proteins. The presence of an active phosphatidylinositol kinase in these membranes was indicated by equal or greater incorporation of 32P into phosphatidylinositol phosphate than into proteins. Phosphorylation of endogenous protein and lipid substrates by protein and phosphatidylinositol kinases in the plasma membranes of a human astrocytoma was investigated in detail. Maximal protein phosphorylation required the presence of Nonidet-P40 and phosphatase inhibitors (vanadate or fluoride). The rate of protein phosphorylation was greater with Mg2+ than with Mn2+, and phosphoserine accounted for 60% of the radioactivity incorporated into proteins. In the presence of Mn2+, phosphorylation of tyrosine was increased and was equal to that of serine phosphorylation (40%). With one exception, the overall pattern of phosphorylated proteins was similar with either Mg2+ or Mn2+. Maximal phosphatidylinositol phosphorylation of the astrocytoma plasma membranes also required detergent and phosphatase inhibitors. However, the enzymatic characteristics of lipid phosphorylation differed from those of protein phosphorylation with respect to divalent cation activation, ATP dependence, and sensitivity to inhibition by p-chloromercuriphenyl sulfonate, quercetin, and nucleoside derivatives. These results suggest that phosphorylation of plasma membrane proteins and phosphatidylinositol is catalyzed by different enzymes. The fact that membrane preparations exhibited phosphatidylinositol kinase activity almost 100,000 times greater than that exhibited by the purified tyrosine kinase of ros gene would exclude this and similar oncogene proteins from making a significant contribution to the overall phosphatidylinositol phosphorylation of cell membranes.  相似文献   

19.
The actin-activated Mg(2+)-ATPase activities of Acanthamoeba myosins I are known to be maximally expressed only when a single threonine (myosin IA) or serine (myosins IB and IC) is phosphorylated by myosin I heavy chain kinase. The purified kinase is highly activated by autophosphorylation and the rate of autophosphorylation is greatly enhanced by the presence of acidic phospholipids. In this paper, we show by immunofluorescence and immunoelectron microscopy of permeabilized cells that myosin I heavy chain kinase is highly concentrated, but not exclusively, at the plasma membrane. Judged by their electrophoretic mobilities, kinase associated with purified plasma membranes may differ from the cytoplasmic kinase, possibly in the extent of its phosphorylation. Purified kinase binds to highly purified plasma membranes with an apparent KD of approximately 17 nM and a capacity of approximately 0.8 nmol/mg of plasma membrane protein, values that are similar to the affinity and capacity of plasma membranes for myosins I. Binding of kinase to membranes is inhibited by elevated ionic strength and by extensive autophosphorylation but not by substrate-level concentrations of ATP. Membrane-bound kinase autophosphorylates to a lesser extent than free kinase and does not dissociate from the membranes after autophosphorylation. The co-localization of myosin I heavy chain kinase and myosin I at the plasma membrane is of interest in relation to the possible functions of myosin I especially as phospholipids increase kinase activity.  相似文献   

20.
Within the lumen of the rough endoplasmic reticulum, oligosaccharyltransferase catalyzes the en bloc transfer of a high mannose oligosaccharide moiety from the lipid-linked oligosaccharide donor to asparagine acceptor sites in nascent polypeptides. The Saccharomyces cerevisiae oligosaccharyltransferase was purified as a heteroligomeric complex consisting of six subunits (alpha-zeta) having apparent molecular masses of 64 kD (Ost1p), 45 kD (Wbp1p), 34 kD, 30 kD (Swp1p), 16 kD, and 9 kD. Here we report a structural and functional characterization of Ost3p which corresponds to the 34-kD gamma-subunit of the oligosaccharyltransferase. Unlike Ost1p, Wbp1p, and Swp1p, expression of Ost3p is not essential for viability of yeast. Instead, ost3 null mutant yeast grow at wild-type rates on solid or in liquid media irrespective of culture temperature. Nonetheless, detergent extracts prepared from ost3 null mutant membranes are twofold less active than extracts prepared from wild-type membranes in an in vitro oligosaccharyltransferase assay. Furthermore, loss of Ost3p is accompanied by significant underglycosylation of soluble and membrane- bound glycoproteins in vivo. Compared to the previously characterized ost1-1 mutant in the oligosaccharyltransferase, and the alg5 mutant in the oligosaccharide assembly pathway, ost3 null mutant yeast appear to be selectively impaired in the glycosylation of several membrane glycoproteins. The latter observation suggests that Ost3p may enhance oligosaccharide transfer in vivo to a subset of acceptor substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号