首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We used a random coefficient regression (RCR) model to estimate growth parameters for the time series of observed serum glucose levels in the Replicate 1 of the Genetic Analysis Workshop 13 simulated data. For comparison, a two time-point interval was also selected and the slope between these two observations was calculated. This process yielded four phenotypes: the RCR growth phenotype, a two time-point slope phenotype, and Time 1 and Time 2 serum glucose level phenotypes. These four phenotypes were used for linkage analyses on simulated chromosomes 5, 7, 9, and 21, those chromosomes that contained loci affecting the growth course for serum glucose levels. The linkage analysis of the RCR-derived phenotype showed overwhelming evidence for linkage at one locus (LOD 65.78 on chromosome 5), while showing elevated but nonsignificant LOD scores for two other loci (LOD 1.25 on chromosome 7, LOD 1.10 on chromosome 9), and no evidence of linkage for the final locus. The two time-point slope phenotype showed evidence for linkage at one locus (LOD 4.16 on chromosome 5) but no evidence for linkage at any of the other loci. A parallel cross-sectional approach, using as input phenotypes the endpoints of the two-point slope phenotype, gave strong linkage results for the major locus on chromosome 5 (maximal LOD scores of 17.90 and 27.24 for Time 1 and Time 2, respectively) while showing elevated but nonsignificant linkage results on chromosome 7 (maximal LOD scores of 1.71 and 1.48) and no evidence for linkage at the two remaining loci. The RCR growth parameter showed more power to detect linkage to the major locus than either the cross-sectional or two-point slope approach, but the cross-sectional approach gave a higher maximal LOD score for one of the minor loci.  相似文献   

2.
Studies have shown that genetic and environmental factors and their interactions affect several alcoholism phenotypes. Genotype x alcoholism (GxA) interaction refers to the environmental (alcoholic and non-alcoholic) influences on the autosomal genes contributing to variation in an alcoholism-related quantitative phenotype. The purpose of this study was to examine the effects of GxA interaction on the detection of linkage for alcoholism-related phenotypes. We used phenotypic and genotypic data from the Collaborative Study on the Genetics of Alcoholism relating to 1,388 subjects as part of Genetic Analysis Workshop 14 problem 1. We analyzed the MXDRNK phenotype to detect GxA interaction using SOLAR. Upon detecting significant interaction, we conducted variance-component linkage analyses using microsatellite marker data. For maximum number of drinks per a 24 hour period, the highest LODs were observed on chromosomes 1, 4, and 13 without GxA interaction. Interaction analysis yielded four regions on chromosomes 1, 4, 13, and 15. On chromosome 4, a maximum LOD of 1.5 at the same location as the initial analysis was obtained after incorporating GxA interaction effects. However, after correcting for extra parameters, the LOD score was reduced to a corrected LOD of 1.1, which is similar to the LOD observed in the non-interaction analysis. Thus, we see little differences in LOD scores, while some linkage regions showed large differences in the magnitudes of estimated quantitative trait loci heritabilities between the alcoholic and non-alcoholic groups. These potential hints of differences in genetic effect may influence future analyses of variants under these linkage peaks.  相似文献   

3.
One of the great strengths of the Framingham Heart Study data, provided for the Genetic Analysis Workshop 13, is the long-term survey of phenotypic data. We used this unique data to create new phenotypes representing the pattern of longitudinal change of the provided phenotypes, especially systolic blood pressure and body weight. We performed a linear regression of body weight and systolic blood pressure on age and took the slopes as new phenotypes for quantitative trait linkage analysis using the SOLAR package. There was no evidence for heritability of systolic blood pressure change. Heritability was estimated as 0.15 for adult life "body weight change", measured as the regression slope, and "body weight gain" (including only individuals with a positive regression slope), and as 0.22 for body weight "change up to 50" (regression slope of weight on age up to an age of 50). With multipoint analysis, two regions on the long arm of chromosome 8 showed the highest LOD scores of 1.6 at 152 cM for "body weight change" and of >1.9 around location 102 cM for "body weight gain" and "change up to 50". The latter two LOD scores almost reach the threshold for suggestive linkage. We conclude that the chromosome 8 region may harbor a gene acting on long-term body weight regulation, thereby contributing to the development of the metabolic syndrome.  相似文献   

4.

Background

Family studies are often conducted in a cross-sectional manner without long-term follow-up data. The relative contribution of a gene to a specific trait could change over the lifetime. The Framingham Heart Study offers a unique opportunity to investigate potential gene × time interaction. We performed linkage analysis on the body mass index (BMI) measured in 1970, 1978, and 1986 for this project.

Results

We analyzed the data in two different ways: three genome-wide linkage analyses on each exam, and one genome-wide linkage analysis on the mean of the three measurements. Variance-component linkage analyses were performed by the SOLAR program. Genome-wide scans show consistent evidence of linkage of quantitative trait loci (QTLs) on chromosomes 3, 6, 9, and 16 in three measurements with a maximum multipoint LOD score > 2.2. However, only chromosome 9 has a LOD score = 2.14 when the mean values were analyzed. More interestingly, we found potential gene × environment interactions: increasing LOD scores with age on chromosomes 3, 9, and 16 and decreasing LOD scores on chromosome 6 in the three exams.

Conclusion

The results indicate two points: 1) it is possible that a gene (or genes) influencing BMI is (are) up- or down-regulated as people aged due to aging process or changes in lifestyle, environments, or genetic epistasis; 2) using mean values from longitudinal data may reduce the power to detect linkage and may have no power to detect gene × time, and/or gene × gene interactions.
  相似文献   

5.
Exploratory data-driven multivariate analysis provides a means of investigating underlying structure in complex data. To explore the stability of multivariate data modeling, we have applied a common method of multivariate modeling (factor analysis) to the Genetic Analysis Workshop 13 (GAW13) Framingham Heart Study data. Given the longitudinal nature of the data, multivariate models were generated independently for a number of different time points (corresponding to cross-sectional clinic visits for the two cohorts), and compared. In addition, each multivariate model was used to generate factor scores, which were then used as a quantitative trait in variance component-based linkage analysis to investigate the stability of linkage signals over time. We found surprisingly good correlation between factor models (i.e., predicted factor structures), maximum LOD scores, and locations of maximum LOD scores (0.81< rho <0.94 for factor scores; rho >0.99 for peak locations; and 0.67< rho <0.93 for peak LOD scores). Furthermore, the regions implicated by linkage analysis with these factor scores have also been observed in other studies, further validating our exploratory modeling.  相似文献   

6.

Background

The Framingham Heart Study has contributed a great deal to advances in medicine. Most of the phenotypes investigated have been univariate traits (quantitative or qualitative). The aims of this study are to derive multivariate traits by identifying homogeneous groups of people and assigning both qualitative and quantitative trait scores; to assess the heritability of the derived traits; and to conduct both qualitative and quantitative linkage analysis on one of the heritable traits.

Methods

Multiple correspondence analysis, a nonparametric analogue of principal components analysis, was used for data reduction. Two-stage clustering, using both k-means and agglomerative hierarchical clustering, was used to cluster individuals based upon axes (factor) scores obtained from the data reduction. Probability of cluster membership was calculated using binary logistic regression. Heritability was calculated using SOLAR, which was also used for the quantitative trait analysis. GENEHUNTER-PLUS was used for the qualitative trait analysis.

Results

We found four phenotypically distinct groups. Membership in the smallest group was heritable (38%, p < 1 × 10-6) and had characteristics consistent with atherogenic dyslipidemia. We found both qualitative and quantitative LOD scores above 3 on chromosomes 11 and 14 (11q13, 14q23, 14q31). There were two Kong &; Cox LOD scores above 1.0 on chromosome 6 (6p21) and chromosome 11 (11q23).

Conclusion

This approach may be useful for the identification of genetic heterogeneity in complex phenotypes by clarifying the phenotype definition prior to linkage analysis. Some of our findings are in regions linked to elements of atherogenic dyslipidemia and related diagnoses, some may be novel, or may be false positives.
  相似文献   

7.
Family-based candidate gene and genome-wide association studies are a logical progression from linkage studies for the identification of gene and polymorphisms underlying complex traits. An efficient way to analyse phenotypic and genotypic data is to model linkage and association simultaneously. An important result from such an analysis is whether any evidence for linkage remains after fitting polymorphisms at candidate genes (residual linkage), because this may indicate locus and allelic heterogeneity in the population and will influence subsequent molecular strategies. Here we report that substantial residual linkage is to be expected, even under genetic homogeneity and when the underlying causal polymorphisms are genotyped and fitted in the model. We simulated a powerful design to detect linkage to quantitative trait loci, with 5, 10 or 20 causal SNPs spread throughout the genome. These SNPs were responsible for all genetic variation, and hence for both linkage and association. Residual linkage at the largest linkage peak from a genome-wide scan was substantial, with mean LOD scores of 0.4, 0.7, and 1.4 for the case of 5, 10 and 20 underlying causal SNPs, respectively. For less powerful designs, the proportion of the original LOD scores that remains after association will be even larger. All cases of ‘significant’ residual linkage are false positives. The reason for the apparent paradox of detecting residual linkage after fitting causal polymorphisms is that the linkage signals at the largest peaks in a genome-scan are severely inflated, even if all peaks correspond to true linkage. Our findings are general and apply to linkage mapping of any phenotype and to any pedigree structure.  相似文献   

8.
Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait.  相似文献   

9.
Substance abuse and obesity are health disparities that may afflict Native Americans more than some other ethnic groups. One theoretical assumption concerning Native people is that the long history of dependence on foraging and subsistence agriculture may have led to selective enrichment of traits that improve genetic fitness, so called 'thrifty' or 'fat sparing' genes. We have speculated that this same selective pressure may have enriched for genetic variants that increase the risk for consumption of alcohol and drugs of abuse. Here, we report the results of a genome scan that compared findings for two consumption phenotypes: 'any drug dependence and/or regular tobacco use' and body mass index (BMI) in southwest California (SWC) Indian families. Variance component analyses from SOLAR were used to generate log of the odds ratio (LOD) scores. Evidence for linkage was found on chromosome 6 for both the 'any drug' (LOD score = 3.3) and BMI (LOD score = 2.3) phenotypes. Bivariate analyses of the two phenotypes revealed a combined LOD score of 4.1 at that location. Additional loci on chromosomes 6, 15, 16 and 21 were found for the 'any drug' phenotype, and on chromosomes 8, 16 and 18 for BMI (LOD scores ranged between 1.2 and 2.3). These results provide suggestive evidence for linkage for substance abuse and BMI in this Mission Indian population and, furthermore, provide preliminary data suggesting that 'consumption phenotypes' may share some genetic determinants.  相似文献   

10.
Study design strategies are of critical importance in the search for genes underlying complex diseases. Two important design choices in planning gene mapping studies are the analytic strategy to be used, which will have an impact on the type of data to be collected, and the choice of genetic markers. In the present paper, we used the simulated behavioral trait data provided in the Genetic Analysis Workshop 14 to: 1) investigate the usefulness of incorporating unaffected sibs in model-free linkage analysis and, 2) compare linkage results of genome scans using a 7-cM microsatellite map with a 3-cM single nucleotide polymorphisms map. To achieve these aims, we used the maximum-likelihood-binomial method with two different coding approaches. We defined the unaffected sibs as those totally free of phenotypes correlated to the disease. Without prior knowledge of the answers, we were able to correctly localize 2 out of 5 loci (LOD > 3) in a sample of 200 families that included the unaffected sibs but only one locus when based on an affected-only strategy, using either microsatellite or SNPs genome scan. LOD scores were considerably higher using the analytic strategy which incorporated the unaffected sibs. In conclusion, including unaffected sibs in model-free linkage analysis of complex binary traits is helpful, at least when complete parental data are available, whereas there are no striking advantages in using single nucleotide polymorphisms over microsatellite map at marker densities used in the current study.  相似文献   

11.
A statistical model for doubled haploids and backcrosses based on the interval-mapping methodology has been used to carry out power studies to investigate the effects of different experimental designs, heritabilities of the quantitative trait, and types of gene action, using two test statistics, the F of Fisher-Snedecor and the LOD score. The doubled haploid experimental design is more powerful than backcrosses while keeping actual type I errors similar to nominal ones. For the doubled haploid design, individual QTLs, showing heritabilities as low as 5% were detected in about 90% of the cases using only 250 individuals. The power to detect a given QTL is related to its contribution to the heritability of the trait. For a given nominal type I error, tests using F values are more powerful than with LOD scores. It seems that more conservative levels should be used for the LOD score in order to increase the power and obtain type I errors similar to nominal ones.  相似文献   

12.
With the availability of longitudinal data, age-specific (stratified) or age-adjusted genetic analyses have the potential to localize different putative trait influencing loci. If age does not influence the locus-specific penetrance function within the range examined, age-stratified analyses will tend to yield comparable results for an individual trait. However, age-stratified results should vary across age strata when the locus-specific penetrance function is age dependent. In this paper, age-stratified and age-adjusted quantitative trait loci (QTL) linkage analyses were contrasted for height, weight, body mass index (BMI), and systolic blood pressure on a subset of the Framingham Heart Study. The strata comprised individuals with data present in each of three age groups: 31-49, 50-60, 61-79. Genome-wide QTL analyses were performed using SOLAR. Over all ages, a linkage signal for height was detected on chromosome 14q11.2 near marker GATA74E02A (LOD for ages 31-49 = 2.38, LOD for ages 50-60 = 1.84, LOD for ages 61-79 = 2.45). Evidence of linkage to BMI in the 31-49 age group was found on chromosome 3q22 (GATA3C02, LOD = 2.89, p = 0.0003) at the same location as the signal for weight (LOD = 3.10, p = 0.0002). Linkage was also supported on chromosome 1p22.1 for BMI (LOD = 2.21, p = 0.0014) and weight (LOD = 2.47, p = 0.0007) in the 31-49 age group. Our age-stratified results suggest that QTL that are expressed over long periods of time and affecting multiple, correlated traits may be identified using genome scan and variance-component methodology to help detect early and/or late gene expression.  相似文献   

13.
To dissect the genetic architecture of sexual dimorphism in obesity-related traits, we evaluated the sex–genotype interaction, sex-specific heritability and genome-wide linkages for seven measurements related to obesity. A total of 1,365 non-diabetic Chinese subjects from the family study of the Stanford Asia–Pacific Program of Hypertension and Insulin Resistance were used to search for quantitative trait loci (QTLs) responsible for the obesity-related traits. Pleiotropy and co-incidence effects from the QTLs were also examined using the bivariate linkage approach. We found that sex-specific differences in heritability and the genotype–sex interaction effects were substantially significant for most of these traits. Several QTLs with strong linkage evidence were identified after incorporating genotype by sex (G × S) interactions into the linkage mapping, including one QTL for hip circumference [maximum LOD score (MLS) = 4.22, empirical p = 0.000033] and two QTLs: for BMI on chromosome 12q with MLS 3.37 (empirical p = 0.0043) and 3.10 (empirical p = 0.0054). Sex-specific analyses demonstrated that these linkage signals all resulted from females rather than males. Most of these QTLs for obesity-related traits replicated the findings in other ethnic groups. Bivariate linkage analyses showed several obesity traits were influenced by a common set of QTLs. All regions with linkage signals were observed in one gender, but not in the whole sample, suggesting the genetic architecture of obesity-related traits does differ by gender. These findings are useful for further identification of the liability genes for these phenotypes through candidate genes or genome-wide association analysis.  相似文献   

14.

Background

Canine atopic dermatitis (AD) is a common, heritable, chronic allergic skin condition prevalent in the West Highland White Terrier (WHWT). In canine AD, environmental allergens trigger an inflammatory response causing visible skin lesions and chronic pruritus that can lead to secondary bacterial and yeast infections. The disorder shares many of the clinical and histopathological characteristics of human AD and represents an animal model of this disorder that could be used to further elucidate genetic causes of human AD. Microsatellite markers genotyped in families of WHWTs affected with AD were used to perform a genome-wide linkage study in order to isolate chromosomal regions associated with the disorder.

Results

Blood samples and health questionnaires were collected from 108 WHWTs spanning three families. A linkage simulation using these 108 dogs showed high power to detect a highly penetrant mutation. Ninety WHWTs were genotyped using markers from the Minimal Screening Set 2 (MSS-2). Two hundred and fifty six markers were informative and were used for linkage analysis. Using a LOD score of 2.7 as a significance threshold, no chromosomal regions were identified with significant linkage to AD. LOD scores greater than 1.0 were located in a 56 cM region of chromosome 7.

Conclusions

The study was unable to detect any chromosomal regions significantly linked to canine AD. This could be a result of factors such as environmental modification of phenotype, incorrect assignment of phenotype, a mutation of low penetrance, or incomplete genome coverage. A genome-wide SNP association study in a larger cohort of WHWTs may prove more successful by providing higher density coverage and higher statistical power.  相似文献   

15.
The study of change in intermediate phenotypes over time is important in genetics. In this paper we explore a new approach to phenotype definition in the genetic analysis of longitudinal phenotypes. We utilized data from the longitudinal Framingham Heart Study Family Cohort to investigate the familial aggregation and evidence for linkage to change in systolic blood pressure (SBP) over time. We used Gibbs sampling to derive sigma-squared-A-random-effects (SSARs) for the longitudinal phenotype, and then used these as a new phenotype in subsequent genome-wide linkage analyses. Additive genetic effects (sigma2A.time) were estimated to account for approximately 9.2% of the variance in the rate of change of SBP with age, while additive genetic effects (sigma2A) were estimated to account for approximately 43.9% of the variance in SBP at the mean age. The linkage results suggested that one or more major loci regulating change in SBP over time may localize to chromosomes 2, 3, 4, 6, 10, 11, 17, and 19. The results also suggested that one or more major loci regulating level of SBP may localize to chromosomes 3, 8, and 14. Our results support a genetic component to both SBP and change in SBP with age, and are consistent with a complex, multifactorial susceptibility to the development of hypertension. The use of SSARs derived from quantitative traits as input to a conventional linkage analysis appears to be valuable in the linkage analysis of genetically complex traits. We have now demonstrated in this paper the use of SSARs in the context of longitudinal family data.  相似文献   

16.
Low levels of high-density lipoprotein (HDL) are widely documented as a risk factor for cardiovascular disease (CVD). Furthermore, there is marked sexual dimorphism in both HDL levels and the prevalence of CVD. However, the extent to which genetic factors contribute to such dimorphism has been largely unexplored. We examined the evidence for genotype-by-sex effects on HDL in a longitudinal sample of 1562 participants from 330 families in the Framingham Heart Study at three times points corresponding approximately to 1971-1974, 1980-1983, and 1988-1991. Using a variance component method, we conducted a genome scan of HDL at each time point in males and females, separately and combined, and tested for genotype-by-sex interaction at a quantitative trait locus (QTL) at each time point. Consistent findings were noted only for females on chromosome 2 near marker D2S1328, with adjusted LOD scores of 2.6, 2.2, and 2.1 across the three time points, respectively. In males suggestive linkage was detected on chromosome 16 near marker D16S3396 at the second time point and on chromosome 18 near marker D18S851 at the third time point (adjusted LOD = 2.2 and 2.4, respectively). Although the heritability of HDL is similar in males and females, sex appears to exert a substantial effect on the QTL-specific variance of HDL. When genotype-by-sex interactions exist and are not modeled, the power to detect linkage is reduced; thus our results may explain in part the paucity of significant linkage findings for HDL.  相似文献   

17.
We present a method for using slopes and intercepts from a linear regression of a quantitative trait as outcomes in segregation and linkage analyses. We apply the method to the analysis of longitudinal systolic blood pressure (SBP) data from the Framingham Heart Study. A first-stage linear model was fit to each subject's SBP measurements to estimate both their slope over time and an intercept, the latter scaled to represent the mean SBP at the average observed age (53.7 years). The subject-specific intercepts and slopes were then analyzed using segregation and linkage analysis. We describe a method for using the standard errors of the first-stage intercepts and slopes as weights in the genetic analyses. For the intercepts, we found significant evidence of a Mendelian gene in segregation analysis and suggestive linkage results (with LOD scores >or= 1.5) for specific markers on chromosomes 1, 3, 5, 9, 10, and 17. For the slopes, however, the data did not support a Mendelian model, and thus no formal linkage analyses were conducted.  相似文献   

18.

Background

We investigate the power of heterogeneity LOD test to detect linkage when a trait is determined by several major genes using Genetic Analysis Workshop 13 simulated data. We consider three traits, two of which are disease-causing traits: 1) the rate of change in body mass index (BMI); and 2) the maximum BMI; and 3) the disease itself (hypertension). Of interest is the power of "HLOD2", the maximum heterogeneity LOD obtained upon maximizing over the two genetic models.

Results

Using a trait phenotype Obesity Slope, we observe that the power to detect the two markers closest to the two genes (S1, S2) at the 0.05 level using HLOD2 is 13% and 10%. The power of HLOD2 for Max BMI phenotype is 12% and 9%. The corresponding values for the Hypertension phenotype are 8% and 6%.

Conclusion

The power to detect linkage to the slope genes is quite low. But the power using disease-related traits as a phenotype is greater than the power using the disease (hypertension) phenotype.
  相似文献   

19.
Strug L  Sun L  Corey M 《BMC genetics》2003,4(Z1):S14
There has been a lack of consistency in detecting chromosomal loci that are linked to obesity-related traits. This may be due, in part, to the phenotype definition. Many studies use a one-time, single measurement as a phenotype while one's weight often fluctuates considerably throughout adulthood. Longitudinal data from the Framingham Heart Study were used to derive alternative phenotypes that may lead to more consistent findings. Body mass index (BMI), a measurement for obesity, is known to increase with age and then plateau or decline slightly; the decline phase may represent a threshold or survivor effect. We propose to use the weight gain phase of BMI to derive phenotypes useful for linkage analysis of obesity. Two phenotypes considered in the present study are the average of and the slope of the BMI measurements in the gain phase (gain mean and gain slope). For comparison, we also considered the average of all BMI measurements available (overall mean). Linkage analysis using the gain mean phenotype exhibited two markers with LOD scores greater than 3, with the largest score of 3.52 on chromosome 4 at ATA2A03. In contrast, no LOD scores greater than 3 were observed when overall mean was used. The gain slope produced weak evidence for linkage on chromosome 4 with a multipoint LOD score of 1.77 at GATA8A05. Our analysis shows how omitting the decline phase of BMI in the definition of obesity phenotypes can result in evidence for linkage which might have been otherwise overlooked.  相似文献   

20.
Systolic blood pressure (SBP) is an age-dependent complex trait for which both environmental and genetic factors may play a role in explaining variability among individuals. We performed a genome-wide scan of the rate of change in SBP over time on the Framingham Heart Study data and one randomly selected replicate of the simulated data from the Genetic Analysis Workshop 13. We used a variance-component model to carry out linkage analysis and a Markov chain Monte Carlo-based multiple imputation approach to recover missing information. Furthermore, we adopted two selection strategies along with the multiple imputation to deal with subjects taking antihypertensive treatment. The simulated data were used to compare these two strategies, to explore the effectiveness of the multiple imputation in recovering varying degrees of missing information, and its impact on linkage analysis results. For the Framingham data, the marker with the highest LOD score for SBP slope was found on chromosome 7. Interestingly, we found that SBP slopes were not heritable in males but were for females; the marker with the highest LOD score was found on chromosome 18. Using the simulated data, we found that handling treated subjects using the multiple imputation improved the linkage results. We conclude that multiple imputation is a promising approach in recovering missing information in longitudinal genetic studies and hence in improving subsequent linkage analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号