首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li X  Wang D  Yang K  Guo X  Lin YC  Samayoa CG  Yang H 《BMC genetics》2003,4(Z1):S35
To evaluate linkage evidence for body mass index (BMI) using both cross-sectional and longitudinal data, we performed genome-wide multipoint linkage analyses on subjects who had complete data at four selected time points (initial, 8th, 12th, and 16th year following the initial visit) from the Framingham Heart Study. The cross-sectional measures included BMI at each of the four selected time points and the longitudinal measure was the within-subject mean of BMI at the above four time points. Using the variance components method, we consistently observed the maximum LOD score out of the genome scan using BMI at each time point and the mean of BMI between 049xd2 and GATA71H05 on chromosome 16. The highest LOD score (3.0) was at time point 1, while the lowest (1.9) was at time point 4. We also observed other suggestive linkages on chromosome 6, 10, and 18 at time point 1 only. The longitudinal measure we studied (mean of BMI) did not provide greater power to identify a positive linkage than some of the cross-sectional measures (e.g., time point 1). The changing of linkage evidence over time provided some insights on the variation of genetic effect on BMI with aging. There may be a QTL on chromosome 16 that contributes to BMI and this locus, and maybe others, is more likely to affect BMI during early adulthood.  相似文献   

2.
Multivariate variance-components analysis provides several advantages over univariate analysis when studying correlated traits. It can test for pleiotropy or (in the longitudinal context) gene x age interaction. It can also have more power than univariate analyses to detect a quantitative trait locus influencing several traits. We apply multivariate variance components to longitudinal systolic blood pressure data from the Framingham Heart Study. We find evidence for a polygenic influence on blood pressure (heritabilities at different ages range from 27% to 38%). Tests based on a factor-analytic parameterization of the polygenic variance find significant (p < 2 x 10(-3)) evidence that different genes affect blood pressure at different ages. Still, estimates for the proportion of polygenic variance due to shared genes ran as high as 85% for some trait pairs. Univariate and multivariate linkage analyses replicate previous linkage results on chromosome 17 (maximum LOD scores of 2.2 and 2.4, respectively). In this study, multivariate analysis provides no increase in power; this is likely due to the strong positive correlation in systolic blood pressure measured at different ages.  相似文献   

3.
The Framingham Heart Study offspring cohort, a complex data set with irregularly spaced longitudinal phenotype data, was made available as part of Genetic Analysis Workshop 13. To allow an analysis of all of the data simultaneously, a mixed-model- based random-regression (RR) approach was used. The RR accounted for the variation in genetic effects (including marker-specific quantitative trait locus (QTL) effects) across time by fitting polynomials of age. The use of a mixed model allowed both fixed (such as sex) and random (such as familial environment) effects to be accounted for appropriately. Using this method we performed a QTL analysis of all of the available adult phenotype data (26,106 phenotypic records). In addition to RR, conventional univariate variance component techniques were applied. The traits of interest were BMI, HDLC, total cholesterol, and height. The longitudinal method allowed the characterization of the change in QTL effects with aging. A QTL affecting BMI was shown to act mainly at early ages.  相似文献   

4.
The relationship between elevated blood pressure and cardiovascular and cerebrovascular disease risk is well accepted. Both systolic and diastolic hypertension are associated with this risk increase, but systolic blood pressure appears to be a more important determinant of cardiovascular risk than diastolic blood pressure. Subjects for this study are derived from the Framingham Heart Study data set. Each subject had five records of clinical data of which systolic blood pressure, age, height, gender, weight, and hypertension treatment were selected to characterize the phenotype in this analysis. We modeled systolic blood pressure as a function of age using a mixed modeling methodology that enabled us to characterize the phenotype for each individual as the individual's deviation from the population average rate of change in systolic blood pressure for each year of age while controlling for gender, body mass index, and hypertension treatment. Significant (p = 0.00002) evidence for linkage was found between this normalized phenotype and a region on chromosome 1. Similar linkage results were obtained when we estimated the phenotype while excluding values obtained during hypertension treatment. The use of linear mixed models to define phenotypes is a methodology that allows for the adjustment of the main factor by covariates. Future work should be done in the area of combining this phenotype estimation directly with the linkage analysis so that the error in estimating the phenotype can be properly incorporated into the genetic analysis, which, at present, assumes that the phenotype is measured (or estimated) without error.  相似文献   

5.

Background

The data arising from a longitudinal familial study have a complex correlation structure that cannot be modeled using classical methods for the analysis of familial data at a single time point.

Methods

To fit the longitudinal systolic blood pressure (SBP) pedigree data arising from the Framingham Heart Study, we proposed to use multilevel modeling. That approach was used to distinguish multiple levels of information with individual repeated measurements (Level 1) being made within individuals (Level 2), and individuals clustered within pedigrees (Level 3). Residuals from the subject-specific and pedigree-specific regression models were summed both for the mean SBP and slope of SBP change over time, in order to define two new outcomes that were then used in a genome-wide linkage analysis.

Results

Evidence for linkage for the two outcomes (mean SBP and slope) was found in several chromosomal regions with a maximum LOD score of 3.6 on chromosome 8 and 3.5 on chromosome 17 for the mean SBP, and 2.5 on chromosome 1 for SBP slope. However, the linkage on chromosome 8 was only detected when the sample was restricted to subjects between age 25 and 75 and with at least four exams (Cohort 1) or 3 exams (Cohort 2).

Discussion

Multilevel modeling is a powerful approach to detect genes involved in complex traits when longitudinal data are available. It allows for complex hierarchical data structure to be taken into account and therefore, a better partitioning of random within-individual variation from other sources of variability (genetic or nongenetic).
  相似文献   

6.
This Genetic Analysis Workshop 13 contribution presents a linkage analysis of hypertension in the Framingham data based on the posterior probability of linkage, or PPL. We dichotomized the phenotype, coding individuals who had been treated for hypertension at any time, as well as those with repeated high blood pressure measurements, as affected. Here we use a new variation on the multipoint PPL that incorporates integration over the genetic model. PPLs were computed for chromosomes 1 through 5, 11, 14, and 17 and remained below the 2% assumed prior probability of linkage for 73% of the locations examined. The maximum PPL of 4.5% was obtained on chromosome 1 at 178 cM. Although this is more than twice the assumed prior probability of linkage, it is well below a level at which we would recommend committing substantial additional resources to molecular follow-up. While the PPL analysis of this data remains inconclusive, Bayesian methodology gives us a clear mechanism for using the information gained here in further studies.  相似文献   

7.
We performed a bivariate analysis on cholesterol and triglyceride levels on data from the Framingham Heart Study using a new score statistic developed for the detection of potential pleiotropic, or cluster, genes. Univariate score statistics were also computed for each trait. At a significance level 0.001, linkage signals were found at markers GATA48B01 on chromosome 1, GATA21C12 on chromosome 8, and ATA55A11 on chromosome 16 using the bivariate analysis. At the same significance level, linkage signals were found at markers 036yb8 on chromosome 3 and GATA3F02 on chromosome 12 using the univariate analysis. A strong linkage signal was also found at marker GATA112F07 by both the bivariate analysis and the univariate analysis, a marker for which evidence for linkage had been reported previously in a related study.  相似文献   

8.
We performed variance components linkage analysis in nuclear families from the Framingham Heart Study on nine phenotypes derived from systolic blood pressure (SBP). The phenotypes were the maximum and mean SBP, and SBP at age 40, each analyzed either uncorrected, or corrected using two subsets of epidemiological/clinical factors. Evidence for linkage to chromosome 8p was detected with all phenotypes except the uncorrected maximum SBP, suggesting this region harbors a gene contributing to variation in SBP.  相似文献   

9.
We performed a genomewide linkage analysis of six separate measurements of body mass index (BMI) taken over a span of 28 years, from 1971 to 1998, in the Framingham Heart Study. Variance-components linkage analysis was performed on 330 families, using 401 polymorphic markers. The number of individuals with data at each exam ranged from 1,930, in 1971, to 1,401, in 1998. Sex, age, and age squared were included as covariates in the model. There was substantial evidence for linkage on chromosome 6q23-25, in the area of D6S1009, GATA184A08, D6S2436, and D6S305. The six measurements had maximum LOD scores of 4.64, 2.29, 2.41, 1.40, 0.99, and 3.08, respectively, all in the chromosome 6q23-25 region. There was also evidence for linkage of multiple measures on chromosome 11q14 in the area of D11S1998, D11S4464, and D11S912. The six measurements had maximum LOD scores of 0.61, 3.27, 1.30, 0.68, 1.30, and 2.29, respectively, all in the chromosome 11q14 region. Both of these regions have been reported in previous studies. Evidence in the same regions from multiple measurements does not constitute replication; however, it does indicate that linkage studies of BMI are robust with respect to measurement error. It is unclear whether the variation in LOD scores in these regions is due to age effects, varying sample size, or other confounding factors.  相似文献   

10.
Missing data are a great concern in longitudinal studies, because few subjects will have complete data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially informative observations due to missing data can be inefficient or biased. To assess the extent of these problems in the context of genetic analyses, we compared case-wise deletion to two multiple imputation methods available in the popular SAS package, the propensity score and regression methods. For both the real and simulated data sets, the propensity score and regression methods produced results similar to case-wise deletion. However, for the simulated data, the estimates of heritability for case-wise deletion and the two multiple imputation methods were much lower than for the complete data. This suggests that if missingness patterns are correlated within families, then imputation methods that do not allow this correlation can yield biased results.  相似文献   

11.

Background

Family studies are often conducted in a cross-sectional manner without long-term follow-up data. The relative contribution of a gene to a specific trait could change over the lifetime. The Framingham Heart Study offers a unique opportunity to investigate potential gene × time interaction. We performed linkage analysis on the body mass index (BMI) measured in 1970, 1978, and 1986 for this project.

Results

We analyzed the data in two different ways: three genome-wide linkage analyses on each exam, and one genome-wide linkage analysis on the mean of the three measurements. Variance-component linkage analyses were performed by the SOLAR program. Genome-wide scans show consistent evidence of linkage of quantitative trait loci (QTLs) on chromosomes 3, 6, 9, and 16 in three measurements with a maximum multipoint LOD score > 2.2. However, only chromosome 9 has a LOD score = 2.14 when the mean values were analyzed. More interestingly, we found potential gene × environment interactions: increasing LOD scores with age on chromosomes 3, 9, and 16 and decreasing LOD scores on chromosome 6 in the three exams.

Conclusion

The results indicate two points: 1) it is possible that a gene (or genes) influencing BMI is (are) up- or down-regulated as people aged due to aging process or changes in lifestyle, environments, or genetic epistasis; 2) using mean values from longitudinal data may reduce the power to detect linkage and may have no power to detect gene × time, and/or gene × gene interactions.
  相似文献   

12.
13.
14.
15.
16.
17.
Several different approaches can be used to examine generational and temporal trends in family studies. The measurement of offspring and parents can be made over a short period of time with parents and offspring having quite different ages, or measurements can be made at the same ages but with decades between parent and offspring measures. A third approach, used in the Framingham Heart Study, has repeated examinations across a broad range of age and time, and provides a unique opportunity to compare these approaches. Parents and offspring were matched both on (year of exam) and on age. Heritability estimates for systolic blood pressure, body mass index, height, weight, cholesterol, and glucose were obtained by regressing offspring on midparent values with and without adjustment for age. Higher estimates of heritability were obtained for age-matched than for year-of-exam-matched data for all traits considered. For most traits, estimates of the heritability of the change over time (slope) of the trait were near zero. These results suggest that the optimal design to identify genetic effects in traits with large age-related effects may be to measure parents and offspring at similar ages and not to rely on age-adjustment or longitudinal measures to account for these temporal effects.  相似文献   

18.
19.
Current linkage analysis methods for quantitative traits do not usually incorporate imprinting effects. Here, we carried out genome-wide linkage analysis for loci influencing adult height in the Framingham Heart Study subjects using variance components while allowing for imprinting effects. We used a sex-averaged map for the 22 autosomes, while chromosomes 6, 14, 18, and 19 were also analyzed using sex-specific maps. We compared results from these four analyses: 1) non-imprinted with sex-averaged maps, 2) imprinted with sex-averaged maps, 3) non-imprinted with sex-specific maps, and 4) imprinted with sex-specific maps. We found four regions on three chromosomes (14q32, 18p11-q21, 18q21-22, and 19q13) with LOD scores above 2.0, with a maximum LOD score of 3.12, allowing for imprinting and sex-specific maps, at D18S1364 on 18q21. While we obtained significant evidence of imprinting effects in both the 18p11-q21 and 19q13 regions when using sex-averaged maps, there were no significant differences between the imprinted and non-imprinted LOD scores when we used sex-specific maps. Our results illustrate the importance of allowing for gender-specific effects in linkage analyses, whether these are in the form of gender-specific recombination frequencies, or in the form of imprinting effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号