首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The mechanisms underlying retinal cell diversification are crucial to proper neural development. Fibroblast growth factor 19 (Fgf19) is expressed by developing horizontal cells (HCs) in the chicken retina. Although there are two major HC subtypes, axon-bearing and axon-less, the precise subtype expressing Fgf19 remains uncertain. Here we characterize Fgf19-expressing cells by co-labeling with antibodies against Lim1 (LIM homeodomain 1, or Lhx1), Islet1, and Prox1 (prospero-related homeobox 1) which are axon-bearing HC, axon-less HC, and pan-HC markers, respectively. We found that a subset of Fgf19-expressing cells was positive for Prox1 and Lim1 in the vitread neuroepithelium at embryonic day 4 (E4). By E9, the majority of Fgf19-expressing cells became positive for Prox1 and Lim1 prior to arrival at the prospective HC layer. In contrast, Fgf19-expressing cells did not overlap with the Islet1-positive population at any stage examined. These results suggest that Fgf19 is expressed by the early migratory horizontal precursors, and later by the presumptive axon-bearing HCs.  相似文献   

5.
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.  相似文献   

6.
7.
Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs) exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal) mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.  相似文献   

8.
We studied tissue-specific expression of homeobox genes Pax6, Prox1, and Six3 during regeneration of the retina and lens. In the native retina, mRNA of Pax6, Prox1, and Six3 was predominantly localized in ganglion cells and in the inner nuclear layer of the retina. Active Pax6, Prox1, and Six3 expression was detected at early stages of regeneration in all proliferating neuroblasts forming the retinal primordium. Low levels of Pax6, Prox1, and Six3 mRNA were revealed in depigmented cells of the pigment epithelium as compared to the proliferating neuroblasts. At the intermediate stage of retinal regeneration, the distribution of Pax6, Prox1, and Six3 mRNA was diffuse and even all over the primordium. During differentiation of the cellular layers in the course of retinal regeneration, Pax6, Prox1, and Six3 mRNA was predominantly localized in ganglion cells and in the inner part of the inner nuclear layer, which was similar to the native retina. An increased expression was revealed in the peripheral regenerated retina where multipotent cells were localized. The dual role of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures has been revealed; these genes controlled cell proliferation and subsequent differentiation of ganglion, amacrine, and horizontal cells. High hybridization signal of all studied genes was revealed in actively proliferating epithelial cells of the native and regenerating lens, while the corneal epithelium demonstrated a lower signal. Pax6 and Prox1 expression was also revealed in single choroid cells of the regenerating eye.  相似文献   

9.
Cells with aberrations in chromosomal ploidy are normally removed by apoptosis. However, aneuploid neurons have been shown to remain functional and active both in the cortex and in the retina. Lim1 horizontal progenitor cells in the chicken retina have a heterogenic final cell cycle, producing some cells that enter S-phase without proceeding into M-phase. The cells become heteroploid but do not undergo developmental cell death. This prompted us to investigate if the final cell cycle of these cells is under the regulation of an active DNA damage response. Our results show that the DNA damage response pathway, including γ-H2AX and Rad51 foci, is not triggered during any phase of the different final cell cycles of horizontal progenitor cells. However, chemically inducing DNA adducts or double-strand breaks in Lim1 horizontal progenitor cells activated the DNA damage response pathway, showing that the cells are capable of a functional response to DNA damage. Moreover, manipulation of the DNA damage response pathway during the final cell cycle using inhibitors of ATM/ATR, Chk1/2, and p38MAPK, neither induced apoptosis nor mitosis in the Lim1 horizontal progenitor cells. We conclude that the DNA damage response pathway is functional in the Lim1 horizontal progenitor cells, but that it is not directly involved in the regulation of the final cell cycle that gives rise to the heteroploid horizontal cell population.  相似文献   

10.
11.
12.
Symmetric cell divisions have been proposed to rapidly increase neuronal number late in neurogenesis, but how critical this mode of division is to establishing a specific neuronal layer is unknown. Using in vivo time-lapse imaging methods, we discovered that in the laminated zebrafish retina, the horizontal cell (HC) layer forms quickly during embryonic development upon division of a precursor cell population. The precursor cells morphologically resemble immature, postmitotic HCs and express HC markers such as ptf1a and Prox1 prior to division. These precursors undergo nonapical symmetric division at the laminar location where mature HCs contact photoreceptors. Strikingly, the precursor cell type we observed generates exclusively HCs. We have thus identified a dedicated HC precursor, and our findings suggest a mechanism of neuronal layer formation whereby the location of mitosis could facilitate rapid contact between synaptic partners.  相似文献   

13.
We have used monoclonal antibodies against each of the major mammalian brain microtubule-associated proteins (MAPs), MAP1, MAP2, MAP3, MAP5, and tau, to study the timing of appearance and the cytological distribution of these proteins during the development of the rat retina. Western blots of adult rat retina reveal MAPs that are characteristic of embryonic brain, i.e., MAP5 and the low-molecular-weight forms of MAP2 (MAP2c) and tau (juvenile tau). At the onset of neuronal differentiation within the embryonic retina, MAP5, MAP3, MAP2c, and tau are found in the perikarya or extending axons of ganglion cells. High-molecular-weight MAP2, a dendrite marker, does not appear in the retina until the second day of postnatal development, when ganglion cell dendrites ramify within the inner plexiform layer. MAP1, which is characteristic of adult brain, does not appear in the retina until 1 week after birth, and is limited to ganglion cells and their processes. In the adult retina, MAP5 and MAP2c are concentrated within the inner segments and cell bodies of photosensitive cells, whereas tau is found in horizontal cells and more internal cell layers. Since photosensitive cells are unique among retinal neurons in their constant regeneration of their primary processes, the photoreceptive outer segments, both MAP5 and MAP2c appear not only to be involved in events associated with the embryonic differentiation and growth of neurites, but also in process regeneration in adult neurons that maintain some embryonic characteristics.  相似文献   

14.
The retina of a mouse embryo on day 13 of gestation, the first day when ganglion cells with axons are detectable, has been studied both qualitatively and quantitatively by reconstructing a large number of cells (more than 100) from an electron microscopic serial section series. Direct evidence has been obtained for migration of prophase nuclei of ventricular cells to the ventricle within an intact process which spans the thickness of the retinal wall. At metaphase most of the vitreal process appears to be pinched off, and the cell completely rounds up. After cytokinesis, cells take one two courses: (1) regrowth of their vitreal process to the vitreal surface while keeping their ventricular process attached at the ventricular surface by a junctional complex; these cells will undergo another round of DNA synthesis and division; (2) regrowth of their vitreal process only so far as the marginal layer with detachment of their ventricular process from the junctional complex and beginning migration of their centrioles and cilium away from the ventricle. These changes represent the earliest detectable quantitative or qualitative changes undergone by cells that will subsequently differentiate into ganglion cells. The sequence of events for the formation of unipolar ganglion cells from these early bipolar cells involves transformation of the simple vitreal process ending in the marginal layer into an axonal growth cone insinuating itself between the tangential axons of the marginal layer and growing toward the optic stalk; at the same time the Golgi complex and centrioles migrate to the perikaryon, and the ventricular process completely withdraws. Usually, but not always, both daughter cells of a mitotic division appear to have the same fate, either both remain ventricular cells or both become ganglion cells. This result is used to construct a simple hypothesis explaining some of the apparently contradictory results of neuronal development, both in the retina and in the rest of the central nervous system.  相似文献   

15.
16.
17.
GDNF and the GDNF receptors, c-Ret, GFR alpha 1 and 2 mRNA is expressed in the developing chicken retina. GDNF labelling was mainly found in embryonic day 4-5 retina but weak labelling could also be found over scattered retinal cells at later stages. c-ret labelling was found over ganglion cells, amacrine and horizontal cells; the preferred GDNF receptor (GFR alpha 1) over amacrine and horizontal cells; and the less preferred GDNF receptor (GFR alpha 2) over ganglion cells, amacrine cells and photoreceptors.  相似文献   

18.
B50/GAP-43 has been implicated in neural plasticity, development, and regeneration. Several studies of axonally transported proteins in the optic nerve have shown that this protein is synthesized by developing and regenerating retinal ganglion cells in mammals, amphibians, and fish. However, previous studies using immunohistochemistry to localize B50/GAP-43 in retina have shown that this protein is found in the inner plexiform layer in adults. Since the inner plexiform layer contains the processes of amacrine cells, ganglion cells, and bipolar cells to determine which cells in the retina express B50/GAP-43, we have now used in situ hybridization to localize the mRNA that codes for this protein in the developing rat retina. We have found that B50/GAP-43 is expressed primarily by cells in the retinal ganglion cell layer as early as embryonic day 15, and until 3 weeks postnatal. Some cells in the inner nuclear layer, possibly a subclass of amacrine cells, also express B50/GAP-43 protein and mRNA; however, the other retinal neurons–bipolar cells, photoreceptors, and horizontal cells express little, if any, B50/GAP-43 at any stage in their development. Early in development, the protein appears in the somata and axons of ganglion cells, while later in development, B50/GAP-43 becomes concentrated in the inner plexiform layer, where it continues to be expressed in adult animals. These results are discussed in terms of previous proposals as to the functions of this molecule. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Dlx homeobox genes, the vertebrate homologs of Distal-less, play important roles in the development of the vertebrate forebrain, craniofacial structures and limbs. Members of the Dlx gene family are also expressed in retinal ganglion cells (RGC), amacrine and horizontal cells of the developing and postnatal retina. Expression begins at embryonic day 12.5 and is maintained until late embryogenesis for Dlx1, while Dlx2 expression extends to adulthood. We have assessed the retinal phenotype of the Dlx1/Dlx2 double knockout mouse, which dies at birth. The Dlx1/2 null retina displays a reduced ganglion cell layer (GCL), with loss of differentiated RGCs due to increased apoptosis, and corresponding thinning of the optic nerve. Ectopic expression of Crx, the cone and rod photoreceptor homeobox gene, in the GCL and neuroblastic layers of the mutants may signify altered cell fate of uncommitted RGC progenitors. However, amacrine and horizontal cell differentiation is relatively unaffected in the Dlx1/2 null retina. Herein, we propose a model whereby early-born RGCs are Dlx1 and Dlx2 independent, but Dlx function is necessary for terminal differentiation of late-born RGC progenitors.  相似文献   

20.
We have used dye injection and immunolabeling to investigate the relationship between connexin (Cx) expression and dye coupling between ganglion cells (GCs) and other cells of the embryonic chick retina between embryonic days 5 and 14 (E5-14). At E5, GCs were usually coupled, via soma-somatic or dendro-somatic contacts, to only one or two other cells. Coupling increased with time until E11 when GCs were often coupled to more than a dozen other cells with somata in the ganglion cell layer (GCL) or inner nuclear layer (INL). These coupled clusters occupied large areas of the retina and coupling was via dendro-dendritic contacts. By E14, after the onset of synaptogenesis and at a time of marked cell death, dye coupling was markedly decreased with GCs coupled to three or four partners. At this time, coupling was usually to cells of the same morphology, whereas earlier coupling was heterogeneous. Between E5 and E11, GCs were sometimes coupled to cells of neuroepithelial morphology that spanned the thickness of the retina. The expression of Cx 26, 32, and 43 differed and their distribution changed during the period studied, showing correlation with events such as proliferation, migration, and synaptogenesis. These results suggest specific roles for gap junctions and Cx's during retinal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号