首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During embryonic development the medial part of the somite disorganizes or breaks up into sclerotomal cells which, according to many published reports, migrate medially to surround the notochord. The purpose of the study was to determine whether these cells actually migrate medially toward the notochord. Distances were measured between the notochord and the adjacent neural tube and the somite or its remnant during the period of somite disorganization. Serially sectioned, normal 10.5- to 13.5-day (d) rat embryos were used. Only transverse sections through the middle of the fourth cervical (C-4) body segment were measured, corresponding to the level of somite No. 8 (10.5 d) or its dermatomyotome remnant (10.5-11.5d) or spinal nerve C-4 (12.5-13.5d). Measurements were taken at six stages from photographic montages, all of which were made at precisely the same magnification. The notochord was the central axial structure from which the measurements were determined. The changes in distance show that during the period of somite breakup the neural tube grows dorsally, away from the notochord which lies adjacent to its ventral surface. Simultaneously the somite remnant moves laterally and dorsally, all the while maintaining its position relative to the overlying ectoderm and leaving behind a trail of sclerotomal cells. Also at each stage cell counts were made on the medial sclerotomal region of the C-4 segment. The average counts reveal that not only does the total number of cells increase substantially over the three-day period (42-7,546), but also the total number of mitoses (3.5-200), while the mitotic index decreases (9.0-2.7). High proliferative activity is apparent in the medial sclerotomal cells throughout the 3-day period. The evidence supports the conclusion that local proliferation of the trailing cells, which were left by the somite remnant as it moved dorsolaterally, causes the subsequent increase in density of the perichordal tissue, rather than an influx of migrating cells. Instead of sclerotomal cells migrating medially toward the notochord, the present study suggests that these cells retain their position relative to the notochord or central axis and that the medial sclerotomal region forms as a result of the growth movements of the surrounding structures.  相似文献   

3.
Recent studies have shown that components of the cell-cycle machinery can have diverse and unexpected roles in the retina. Cyclin-kinase inhibitors, for example, have been implicated as regulators of cell-fate decisions during histogenesis and reactive gliosis in the adult tissue after injury. Also, various mechanisms have been identified that can compensate for extra rounds of cell division when the normal timing of the cell-cycle exit is perturbed. Surprisingly, distinct components of the cell-cycle machinery seem to be used during different stages of development, and different organisms might rely on distinct pathways. Such detailed studies on the regulation of proliferation in complex multicellular tissues during development have not only advanced our knowledge of the ways in which proliferation is controlled, but might also help us to understand the degenerative disorders that are associated with gliosis and some types of tumorigenesis.  相似文献   

4.
5.
The extent of a neuron's dendritic field defines the region within which information is processed. The dendritic fields of functionally distinct ON and OFF center retinal ganglion cells (RGCs) form separate mosaics across the retina. Within each mosaic, neighboring dendritic fields overlap by a constant amount, sampling the visual field with the appropriate coverage. Contact-mediated lateral inhibition between neighboring RGCs has long been thought to regulate both the extent and overlap of dendritic fields during development. Here we show that dendro-dendritic contact exists between developing RGCs and occurs in a manner that would regulate the formation of ON and OFF mosaics separately. Dye-filled neighboring ON and OFF ferret alpha RGCs were reconstructed using multiphoton microscopy. At all neonatal ages examined, we observed dendro-dendritic contacts between RGCs of the same sign (ON/ON; OFF/OFF), but never between cells of opposite signs (ON/OFF). Terminal dendrites of one cell often touched a dendrite of its neighbor as they intersected. In some instances, the distal dendrite of one cell formed a fascicle with the proximal process of its neighbor. Alpha cells did not form contacts with neighboring beta cells of the same sign. Together, these observations suggest that dendro-dendritic contact between RGCs is cell-type specific. Dendritic contacts were observed even before the alpha cell arbors were completely stratified, suggesting that cell-cell recognition may take place early in their development. For each cell type, the relative overlap of dendritic fields was constant with age, despite a two-fold increase in field area. We suggest that dendro-dendritic contacts may be sites of intercellular signaling that could regulate local extension of dendrites to maintain the relative overlap of RGCs within a mosaic during development.  相似文献   

6.
Summary All cells in the optic vesicle of Xenopus embryos from stages 27 to 31 have the same ultrastructure. They are elongated and appear to extend from the internal to the external surfaces of the optic vesicle. They are bound together by terminal bars at the internal (lumen) margin, have microvilli and a cilium on the internal margin, and are covered with a basement membrane on the external margin. Their cytoplasm contains abundant free ribosomes, polysomes, mitochondria, yolk and lipid inclusions, and sparse endoplasmic reticulum.Although other studies have shown that retinal ganglion cells originate at stages 29–30 and have their central connections determined before stage 31, these events could not be correlated with any ultrastructural changes. The first sign of differentiation in retinal cells was an increase in endoplasmic reticulum and Golgi apparatus at stage 32. Microtubules and microfilaments appeared at stage 33 in association with the first axonal outgrowth from retinal ganglion cells. Cytodifferentiation proceeded gradually until large areas of Nissl substance had developed by stage 35. At larval stage 48 the ganglion cells resembled those in the adult.The authors wish to thank Marija Duda for her excellent technical assistance during this investigation.Supported by Public Health Service Predoctoral Fellowship No. 5 FO 1 GM37746-02 and Postdoctoral Fellowship 1 F2 NB37,746-01.Supported by Grant GB8315 from the National Science Foundation.  相似文献   

7.
Cell death in the developing retina is regulated, but so far little is known about what factors regulate the cell death. Several neurotrophic factors and receptors, including the neurotrophins and Trk receptors, are expressed during the critical time. We have studied the developing avian retina with respect to the role of nerve growth factor (NGF) in these processes. Our starting point for the work was that NGF and its receptor TrkA are expressed in a partially overlapping pattern in the inner nuclear layer of the developing retina. Our results show that TrkA and NGF-expressing cells are postmitotic. The first NGF-expressing cells were found on the vitreal side of the central region of E5.5-E6 retina. This pattern changed and NGF-expressing cells identified as horizontal cells were later confined to the external inner nuclear layer. We show that these horizontal cells co-express TrkA and NGF, unlike a subpopulation of amacrine cells that only expresses TrkA. In contrast to the horizontal cells, which survive, the majority of the TrkA-expressing amacrine cells die during a period of cell death in the inner nuclear layer. Intraocular injections of NGF protein rescued the dying amacrine cells and injection of antisense oligonucleotides for NGF that block its synthesis, caused death among the TrkA-expressing horizontal cells, which normally would survive. Our results suggest that NGF supports the survival of TrkA expressing avian horizontal cells in an autocrine mode of action in the retina of E10-E12 chicks. The cells co-express TrkA and NGF and the role for NGF is to maintain the TrkA-expressing horizontal cells. The TrkA-expressing amacrine cells are not supported by NGF and subsequently die. In addition to the effect on survival, our results suggest that NGF plays a role in horizontal cell plasticity.  相似文献   

8.
钙离子是细胞内功能最为广泛的第二信使之一,在为数众多的细胞内信号通路中发挥作用。对细胞内钙离子分布、调控及功能的研究是我们了解细胞生理的重要途径。本文基于我们实验室对视网膜的研究工作,介绍了视网膜水平细胞中钙离子信号的调控与生理功能。  相似文献   

9.
A simplified model of the membrane of horizontal cells of the L-type is designed to reflect two principal features of these cells previously studied experimentally: 1) their hyperpolarization response to light is the result of a decrease in the EPSP that is kept constant in darkness; 2) the resistance of their nonsynaptic membrane is reduced during hyperpolarization within physiological limits (from 0 to−70 mV). The model also reproduces properties of the horizontal cells such as the low membrane potential in darkness, reversal of the response to light during depolarization beyond the zero level, mutual amplification of color signals, saturation of the response to bright light, steady-state volt-ampere characteristics in darkness and light, and the amplitude characteristic curve which often has a steep part within a certain range of membrane potentials. The presence of hysteresis loops of the volt-ampere and amplitude characteristic curves of the horizontal cells predicted by the model was confirmed experimentally on the fish retina. Analysis of the model and results obtained with it show that the nonsynaptic membrane of the horizontal cells can actively amplify slow graded potentials.  相似文献   

10.
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+) and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+), whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.  相似文献   

11.
Li S  Mo Z  Yang X  Price SM  Shen MM  Xiang M 《Neuron》2004,43(6):795-807
  相似文献   

12.
Summary Retinal pigment epithelial cells from chicks at various stages of development were examined by transmission electron microscopy to determine how the adult form of the zonula adhaerens, composed of subunits termed zonula adhaerens complexes, is acquired. During early stages of development, between embryonic day 4 and embryonic day 7, the intermembrane discs of zonula adhaerens complexes appear to be formed from material already present between the junctional membranes of the zonulae adhaerentes. In contrast, the cytoplasmic plaque material of the zonulae adhaerentes is difficult to detect before hatching; it is seen as a dense band along the junctional membranes at hatching and as individual subunits in register with the intermembrane discs in adult retinal pigment epithelial cells. After embryonic day 16, when the zonulae adhaerentes increase dramatically in size, single zonula adhaerens complexes are also present basal to the zonulae adhaerentes along the lateral cell membrane. This suggests that, during later stages of development, the junctions grow in size and/or turn over by the addition of pre-assembled zonula adhaerens complexes.Abbreviations CMB Circumferential microfilament bundle - ZA Zonula adhaerens - ZAC Zonula adhaerens complex - RPE Retinal pigment epithelium  相似文献   

13.
We assessed expression patterns of angiogenesis-related genes in mouse retina during perinatal vascularization and in adulthood. Vascular endothelial growth factor (vegf) and its receptors flk, flt1, and neuropilins 1 and 2 are expressed in both vascularized and avascular areas. Within the expression domain for vegf, appearance of these receptors is spatially and temporally non-overlapping. Expression of flk, flt1, the matrix metalloproteinase mt1-mmp, and the tissue inhibitor of metalloproteinase timp2, but not of mmp2, mmp9, timp1, or timp3, correlates with inner retinal vascularization. In particular, expression of flk, flt1 and mt1-mmp in the inner retina begins adjacent to the optic nerve head and extends anteriorly during the first week of life, roughly concordant with the growth of retinal vessels. Several genes (vegf, flk, flt1, timp2, possibly mmp9) appear to be expressed by retinal glia.  相似文献   

14.
These studies address the hypothesis that Ag-bearing epidermal Langerhans cells migrate to the regional lymph node during contact sensitization and function as APC. Skin from C3H mice was grafted onto BALB/c nude mice, and 7 or 14 days later, the recipients were sensitized with FITC through the grafts. APC from lymph nodes draining the site of sensitization were capable of sensitizing C3H recipients to FITC. Because sensitization is MHC restricted, only cells reaching the lymph node from the grafted skin could have induced contact hypersensitivity in C3H mice. Examination of the FITC+ draining lymph node cells by immunofluorescence and immunoelectron microscopy demonstrated that all were Ia+, most were F4/80+, and some contained Birbeck granules. These studies demonstrate that Ia+, FITC+ cells from the skin, at least some of which are Langerhans cells, leave the skin after epicutaneous sensitization with FITC and participate in the initiation of the contact hypersensitivity response within the regional lymph node.  相似文献   

15.
16.
The spatial transfer functions (STF) of L-type horizontal cells (HC) in turtle retina were measured using drifting sine wave grating stimuli. Two classes of STF were identified: low-pass and band-pass. A low-pass STF corresponds to a linespread function (LSF) having an excitatory center that attenuates montonically with distance; a band-pass STF corresponds to a LSF with an excitatory center and an inhibitory surround. Two models of the surround inhibitory mechanism, based on retinal outer plexiform layer (OPL) anatomy, are tested experimentally: surround mediated lateral inhibition and surround modulated self-inhibition. In both types, sign inverting pathways are based on GABA feedback synapses, and sign conserving pathways are based on excitatory synapses and gap junctions. Temperature variation was used to modify synaptic properties and study their effect on STF. The low frequency limb of band-pass STF was most sensitive to temperature changes; its slope increased with decreasing temperature. Synaptic properties were also manipulated pharmacologically. Cutoff frequency of low-pass STF decreased from 0.5 to 0.4 cpmm during exogenous GABA. Picrotoxin (PTX) increases upper cutoff frequency and decreases low frequency limb slope in band-pass STF. Band-pass STF of a ganglion cell (GC) has higher upper and lower cutoff frequencies than a HC in the same retinal region, which corresponds to strong spatial convergence from HC to GC. Orientation sensitivity and directional selectivity were found in some HC. Differences between major and minor response axes in orientation sensitive HC were small, ca. 2 dB; orientation differences in directionally selective HC were also small (ca. 1–2 dB) but directional asymmetry was large (ca. 10–12 dB).  相似文献   

17.

Background  

Horizontal cells are retinal interneurons that modulate the output from photoreceptors. A rich literature on the morphological classification and functional properties of HCs in different animals exists, however, the understanding of the events underlying their development is still limited. In most vertebrates including chicken, two main horizontal cell (HC) subtypes are identified based on the presence or absence of an axon.  相似文献   

18.
A temporal pattern of the peribacteroid membrane (PBM) transport function was studied. Spectrophotometric recording was used for establishing the effect of carbon-and nitrogen-containing substrates (malate, succinate, and glutamate) on the acidification of the peribacteroid space and the intensity of light scattering in the symbiosome suspension from broad bean (Vicia faba L.) root nodules of different age. At the early stages of nodule formation and functioning, PBM is permeable not only for malate and succinate, but also for glutamate, and this permeability fully provides for the active bacteroid division and the nitrogenase complex synthesis in the bacteroids at the expense of the carbon-and nitrogen-containing substrates. Mature nodules are characterized by the greatest nitrogen-fixing activity. In these nodules, PBM is selectively permeable for malate and succinate, but constitutes a barrier for glutamate. Thereby, mutually beneficial relations between the symbiotic partners are achieved. In senescent nodules, a rearrangement of symbiotic interactions is directed toward a minimization of both carbon and nitrogen metabolite consumption by the bacteroids. It is concluded that, in the course of the development of the legume-rhizobia symbiosis, the PBM transport function is changed. This function determines a qualitatively different pattern of symbiotic partner interactions in the following sequence: parasitism-mutualism-commensalism.  相似文献   

19.
20.
The influence of maternal environment on fetal development is largely unexplored, the available evidence concerns only the deleterious effects elicited by prenatal stress. Here we investigated the influence of prenatal enrichment on the early development of the visual system in the fetus. We studied the anatomical development of the rat retina, by analyzing the migration of neural progenitors and the process of retinal ganglion cell death, which exerts a key role in sculpturing the developing retinal system at perinatal ages. The number of apoptotic cells in the retinal ganglion cell layer was analyzed using two distinct methods: the presence of pyknotic nuclei stained for cresyl violet and the appearance of DNA fragmentation (Tunel method). We report that environmental enrichment of the mother during pregnancy affects the structural maturation of the retina, accelerating the migration of neural progenitors and the dynamics of natural cell death. These effects seem to be under the control of insulin-like growth factor-I: its levels, higher in enriched pregnant rats and in their milk, are increased also in their offspring, its neutralization abolishes the action of maternal enrichment on retinal development and chronic insulin-like growth factor-I injection to standard-reared females mimics the effects of enrichment in the fetuses. Thus, the development of the visual system is sensitive to environmental stimulation during prenatal life. These findings could have a bearing in orienting clinical research in the field of prenatal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号