首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A distinguishing feature of elite cross-country skiers is their superlative upper-body power (UBP). Recently, roller board training was shown to be superior for improving UBP in cross-country skiers; however, the newly developed wind machine had not yet been tested. The purpose of this study was to determine if wind machine training was as effective as roller board training at increasing UBP. Forty-four women cross-country skiers, age 23-59 years, were matched on initial UBP, measured in watts (W), and placed into 1 of 2 experimental groups (roller board or wind machine). All women underwent 8 weeks of UBP training. Although both groups improved significantly pre-post (p < 0.05) in UBP, t-tests indicated that there was no significant difference (p > 0.05) between the 2 groups' improvements (roller board, pre 74.5 +/- 30.9, post 95.9 +/- 29.8 W; wind machine, pre 74.5 +/- 33.5, post 99.3 +/- 34.3 W). Thus the wind machine was as effective at enhancing UBP as the roller board.  相似文献   

2.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

3.
To assess the influences of age and sex on regional changes in 1 repetition maximum (1RM) strength, 10 young men (20-30 years), 8 young women (20-30 years), 11 older men (65- 75 years), and 10 older women (65-75 years) were studied before and after a 24-week whole-body strength training program. Changes in 1RM strength were analyzed for each individual exercise, as well as by calculating a total body score (TBS), an upper body score (UBS), and a lower body score (LBS). The effect of age and sex on changes in 1RM strength was analyzed using a repeated measures analysis of variance. When changes in strength for individual exercises were analyzed, the chest press, lat pulldown, shoulder press, and triceps pushdown were affected by both age (p < 0.05) and sex (p < 0.05), while the biceps curls were only influenced by age (p < 0.05). For the lower body, the leg press changes in 1RM strength were influenced by age (p < 0.0001), while leg extension was influenced by sex (p < 0.05). Total body score, UBS, and LBS showed significant increases with 24 weeks of ST (p < 0.001, all). Changes in TBS and UBS were affected by age (p < 0.001, both) and sex (p < 0.05 and p < 0.001, respectively). Younger subjects showed a greater increase in strength than older subjects, and men showed a greater increase in strength compared with women. Changes in LBS were affected by age (p < 0.001), with younger subjects showing a greater increase in strength compared with the older subjects, but not by sex (p = 0.464). These data indicate that regional increases in strength are differentially affected by age and sex.  相似文献   

4.
The purpose of this study was to investigate the changes in the body composition, body size, muscle strength, and VO2max after 24 weeks of resistance or endurance training and detraining in young men. Thirty healthy college-aged men (20.4 ± 1.36 years) participated in the study. Subjects were assigned to resistance training group (RTG, n = 10), endurance training group (ETG, n = 10), and control group (CG, n = 10). The training program consisted of running or weight-resistance exercise for 3 sessions per week under supervision. VO2max, upper and lower body strength (UBS, LBS), body fat, lean body mass, and body circumference were measured at baseline and after training and detraining. After the training period, the exercise groups demonstrated significant increases in VO2max and LBS (p < 0.05). The UBS, lean mass (LM), and body size of arm and calf were significantly greater in the RTG than in the other 2 groups (p<0.05). In addition, the strength and LM of the RTG were still greater than the baseline values after 24 weeks of detraining (p < 0.05). The conclusions of this study are (a) that endurance or resistance training alone led to training-specific improvements in physical performance, body composition, and body size of the arms for the young men examined and (b) that the RTG maintained the gains in strength and LM for more prolonged periods after training ceased than the endurance training group.  相似文献   

5.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

6.
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.  相似文献   

7.
The purpose of this study was to examine the effects of a drink containing creatine, amino acids, and protein vs. a carbohydrate placebo on body composition, strength, muscular endurance, and anaerobic performance before and after 10 weeks of resistance training. Fifty-one men (mean +/- SD; age: 21.8 +/- 2.9 years) were randomly assigned to either the test drink (TEST; n = 23) or the placebo (PLAC; n = 28) and performed two 30-second Wingate Anaerobic Tests for determination of peak power (PP) and mean power (MP), were weighed underwater for percent body fat (%fat) and fat-free mass (FFM), and were tested for 1 repetition maximum (1RM) dynamic constant external resistance strength and muscular endurance (END; number of repetitions performed with 80% of 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. The testing was conducted before (PRE) and after (POST) 10 weeks of resistance training (3 sets of 10 repetitions with 80% of the subject's 1RM performed 3 times per week) on the LE and BP exercises. Body weight, FFM, LE 1RM, LE END, BP 1RM, and BP END increased (p < 0.05), whereas %fat decreased (p < 0.05) from PRE to POST for both the TEST and PLAC groups. Peak power and MP, however, increased for the TEST group, but not for the PLAC group. These results suggested that the creatine-, amino acid-, and protein-containing drink provided no additional benefits when compared with carbohydrates alone for eliciting changes in body composition, strength, and muscular endurance after a 10-week resistance training period. The TEST drink was, however, more effective than carbohydrates alone for improving anaerobic power production.  相似文献   

8.
The effect of very long endurance exercise on muscle carnitine was studied. Eighteen cross-country skiers took part in a race in the Alps (average inspired partial pressure of O2 100-110 Torr) that lasted on average 13 h 26 min. Carnitine intake, evaluated for 2 wk before the event, was 50 +/- 4 (SE) mg/day. Muscle (vastus lateralis) total carnitine concentration, measured twice with a 2-yr interval on eight rested subjects, did not change with time (17 vs. 16 mumol/g dry wt, NS) but showed consistent interindividual differences (range 12-22, P = 0.001) with no correlation with intake. After exercise, total muscle carnitine was unaltered (from 17.9 +/- 1.0 at rest to 18.3 +/- 0.8 mumol/g dry wt postexercise in the 15 subjects who completed the race, NS), but muscle free carnitine decreased 20% (from 14.9 +/- 0.8 mumol/g, P = 0.01) and short-chain acylcarnitine increased 108% (from 3.5 +/- 0.4 mumol/g, P = 0.01). These results suggest that carnitine deficiency will probably not result from strenuous aerobic exercise in trained subjects who consume a moderate amount of carnitine in their food.  相似文献   

9.
Repetitions to fatigue (RTF) using less than a 1 repetition maximum (1RM) load (RepWt) have been shown to be a good predictor of 1RM strength in men, but such information is scarce in women. The purpose of this study was to evaluate the accuracy of current prediction equations to estimate 1RM bench press performance and to determine whether resistance training changes the capability to predict 1RM from muscular endurance repetitions in young women. Members (n = 103) of a required wellness course were measured for 1RM bench press and RTF using randomly assigned percentages between 60% and 90% of the 1RM (RepWt) before and after 12 weeks of progressive resistance training. The %1RM used to perform RTF remained the same for each individual after training (75.6% +/- 10.3%) as before. One repetition maximum bench press increased significantly after training (28% +/- 21%). Although the change in the group average for RTF (0.6 +/- 6.1) was not significant, the correlation between pretraining and posttraining RTF was moderate (r = 0.66; p < 0.01), and individual differences in percentage change in RTF were substantial (27% +/- 99%). The percentage change in 1RM was not significantly related to initial 1RM (r = -0.05), but it was negatively related to the change in RTF (r = -0.40; p < 0.01). Prediction equations were more accurate in the pretraining and posttraining conditions, in which fewer than 10 RTF were used. Resistance training may alter the relationship between strength and muscle endurance across a wide range of RTF in young women without compromising the accuracy of predicting maximal strength.  相似文献   

10.
The purpose of this study was to compare the effect of 2 training programs differing in the relative contribution of training volume, clearly below vs. within the lactate threshold/maximal lactate steady state region on performance in endurance runners. Twelve subelite endurance runners (who are specialists in track events, mostly the 5,000-m race usually held during spring-summer months and who also participate in cross-country races [9-12 km] during fall and winter months) were randomly assigned to a training program emphasizing low-intensity (subthreshold) (Z1) or moderately high-intensity (between thresholds) (Z2) training intensities. At the start of the study, the subjects performed a maximal exercise test to determine ventilatory (VT) and respiratory compensation thresholds (RCT), which allowed training to be controlled based on heart rate during each training session over a 5-month training period. Subjects performed a simulated 10.4-km cross-country race before and after the training period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; RCT). The contribution of total training time spent in zones 1 and 2 was controlled to have relatively more low-intensity training in Z1 (80.5 +/- 1.8% and 11.8 +/- 2.0%, respectively) than in Z2 (66.8 +/- 1.1% and 24.7 +/- 1.5%, respectively), whereas the contribution of high-intensity (zone 3) training was similar (8.3 +/- 0.7% [Z1] and 8.5 +/- 1.0% [Z2]). The magnitude of the improvement in running performance was significantly greater (p = 0.03) in Z1 (-157 +/- 13 seconds) than in Z2 (-121.5 +/- 7.1 seconds). These results provide experimental evidence supporting the value of a relatively large percentage of low-intensity training over a long period ( approximately 5 months), provided that the contribution of high-intensity training remains sufficient.  相似文献   

11.
The purpose of the current study was to investigate the effect of 10 weeks of strength training on the flexibility of sedentary middle-aged women. Twenty women were randomly assigned to either a strength training group (n = 10; age, 37 +/- 1.7 years; body mass, 65.2 +/- 10.7 kg; height, 157.7 +/- 10.8 cm; and body mass index, 25.72 +/- 3.3 kg x m(-2)) or a control group (n = 10; age, 36.9 +/- 1.2 years; body mass, 64.54 +/- 10.18 kg; height, 158.1 +/- 8.9 cm; and body mass index, 26.07 +/- 2.8 kg x m(-2)). The strength training program was a total body session performed in a circuit fashion and consisted of 7 exercises performed for 3 circuits of 8 to 12 repetitions maximum (RM), except for the abdominal exercise which was performed for 15 to 20 RM. Flexibility measurements were taken for 10 articulation movements pre and post training: shoulder flexion and extension, shoulder horizontal adduction and abduction, elbow flexion, hip flexion and extension, knee flexion, and trunk flexion and extension. Pre and post training, 10 RM strength significantly increased (p < 0.05). Of the movements examined, only shoulder horizontal adduction, hip flexion and extension, and trunk flexion and extension demonstrated significant increases (p < 0.05). Neither elbow nor knee flexion showed a significant change with weight training. The control group showed no significant change in any of the flexibility measures determined. In conclusion, weight training can increase flexibility in previously sedentary middle-aged women in some, but not all joint movements.  相似文献   

12.
The purpose of this study was to assess the effect of resistance training on upper-body muscular strength and the expression of work capacity and muscular endurance. In addition, a training-induced change in the relationship between muscular strength and endurance was assessed by testing changes in the accuracy of using endurance repetitions to predict 1 repetition maximum (1RM) bench press before and after training. College-aged men (n = 85) and women (n = 62) completed a 12-week linear periodization resistance training program. Before and after training, the subjects were assessed for 1RM and repetitions to fatigue (RTFs) with a submaximal load. After pretraining 1RM determination, the subjects were randomly assigned to perform RTFs at 65% 1RM (n = 74) or 90% 1RM (n = 73). Pretraining and posttraining RTFs were conducted at the same respective % 1RM. Work capacity was determined from repetition weight × RTF. After training, there was a significant increase in 1RM in both men (~14%) and women (~23%). Posttraining RTF was not different from pretraining RTF at 65 %1RM (18.2 ± 5.1 and 19.0 ± 6.0, respectively) but was significantly reduced in the 90% 1RM group (6.1 ± 3.6 vs. 4.5 ± 2.7, respectively). Likewise, there was a differential effect of training on the expression of work capacity, which increased in the 65 % 1RM group (123 ± 155 kg-reps) but decreased in the 90% 1RM group (-62 ± 208 kg-reps); the effect was independent of gender within each testing group. In conclusion, the changes in muscular strength associated with resistance training produced an increase in work capacity when tested with a 65 % 1RM load without a change in endurance. In contrast, both work capacity and endurance decreased when tested with 90% 1RM. Thus, the impact of strength training on work capacity and muscle endurance is specific to the load at which endurance testing is performed.  相似文献   

13.
The purpose of this study was to examine the acute effects of a caffeine-containing supplement on upper- and lower-body strength and muscular endurance as well as anaerobic capabilities. Thirty-seven resistance-trained men (mean +/- SD, age: 21 +/- 2 years) volunteered to participate in this study. On the first laboratory visit, the subjects performed 2 Wingate Anaerobic Tests (WAnTs) to determine peak power (PP) and mean power (MP), as well as tests for 1 repetition maximum (1RM), dynamic constant external resistance strength, and muscular endurance (TOTV; total volume of weight lifted during an endurance test with 80% of the 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. Following a minimum of 48 hours of rest, the subjects returned to the laboratory for the second testing session and were randomly assigned to 1 of 2 groups: a supplement group (SUPP; n = 17), which ingested a caffeine-containing supplement, or a placebo group (PLAC; n = 20), which ingested a cellulose placebo. One hour after ingesting either the caffeine-containing supplement or the placebo, the subjects performed 2 WAnTs and were tested for 1RM strength and muscular endurance on the LE and BP exercises. The results indicated that there was a significant (p < 0.05) increase in BP 1RM for the SUPP group, but not for the PLAC group. The caffeine-containing supplement had no effect, however, on LE 1RM, LE TOTV, BP TOTV, PP, and MP. Thus, the caffeine-containing supplement may be an effective supplement for increasing upper-body strength and, therefore, could be useful for competitive and recreational athletes who perform resistance training.  相似文献   

14.
In this study, we investigated whether a heavy strength training program, as an additive to an endurance running program, would cause significant improvements in 3-km run time in a group of recreationally fit women when compared with endurance-only (EO) training. Sixteen women aged between 18 and 27 years of age were randomly assigned to either an EO group (n = 9) or a concurrent strength and endurance (CSE) group (n = 7). A 10-week training program for both groups consisted of an endurance running program performed three afternoons per week. The CSE group also participated in strength training on the morning of each running session. Testing was conducted pre and post training in a 3-km time trial and measured VO2peak, running economy, muscular strength (1 repetition maximum), and body composition and girth. There was a trend (P = 0.07) toward greater improvement in 3-km performance time for the CSE group (106.7 +/- 91.4 seconds) when compared with the EO group (77.3 +/- 93.0 seconds). Further, the CSE group showed an increase in strength levels when compared with the EO group. The CSE group showed significant increases (P 相似文献   

15.
This study was to assess whether the point of deflection from linearity of heart rate (HRd) could be an accurate predictor of ventilatory threshold (VT2) during a specific cross-country roller-skiing (RS) test. Ten well-trained cross-country skiers performed a maximal and incremental RS test in the field and a standardized maximal and incremental treadmill running (TR) test in the laboratory. Values of oxygen uptake (VO2) and heart rate (HR) were continuously recorded during all exercises by a portable breath-by-breath gas exchange measurement system and a wireless Polar monitoring system, respectively. The VT2 and HRd points were individually determined by visual analysis during RS. Maximal VO2 (VO2 max) and HR were higher (p < 0.05) during TR (67.1 +/- 7.3 ml x min(-1) x kg(-1) and 196.0 +/- 14.1 bpm, respectively) compared with RS (64.2 +/- 7.3 ml x min(-1) x kg(-1) and 191.5 +/- 13.1 bpm, respectively). However, a high correlation (r = 0.94, p < 0.01) between TR and VO2 max was observed. Paired t-tests showed no significant differences in HR (183.6 +/- 15.1 vs. 185.2 +/- 13.9 bpm) and VO2 (55.5 +/- 7.1 vs. 55.8 +/- 6.1 ml x min(-1) x kg(-1)) at intensities corresponding to HRd and VT2 during the RS test, respectively; Pearson product-moment correlation coefficients demonstrated significant relationships for HR at the HRd and VT2 points (r = 0.99, p < 0.001) as well as for VO2 (r = 0.95, p < 0.001). Our results indicate that the specific incremental RS test is effective in eliciting HRd in the field for all skiers and is an accurate predictor of VT2. These findings give very interesting practical applications to cross-country coaches and skiers to evaluate and control specific aerobic training loads.  相似文献   

16.
We have studied the variations induced in iron status parameters by four endurance races of different lengths. A comprehensive group of 48 healthy, non-iron deficient, endurance athletes were evaluated before and after four different cross-country and roller ski races: I = Skirollonga, roller ski race for individuals (n = 10), mean duration (MD) = 1 h 48 min; II = Marcialonga, cross-country ski race for individuals (n = 9) MD = 3 h 10 min; III = 12-h of Caldonazzo (Trento-Italy) roller ski relay race (n = 13) MD = 12 h; IV = 24-h of Pinzolo (Trento-Italy) cross-country ski relay race (n = 16) MD = 24 h. In the relays the MD includes both exercise and recovery times. Blood samples were taken before and after every race for the determination of the following haematological parameters: red blood count, haemoglobin, and packed cell volume, serum iron concentration [SI], serum ferritin concentration [FERR] and total iron binding capacity (TIBC). The results showed a constant significant increase of [FERR] after the races (+44.9% in I, +50.5% in II, +51.2% in III and +36.5% in IV, P less than 0.01) while [SI] increased only in the first two races (+28.2% in I and +19.7% in II, P less than 0.01) and showed a remarkable decrease in the longer races (-46.1% in III and -39% in IV, P less than 0.01). The TIBC increased in all the races (except II) to the same extent (range 10%-12%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this study was to investigate the effects of a six-week (16-17 training sessions) low velocity resistance training program (LV) on various performance measures as compared to a traditional strength (TS) and a traditional muscular endurance (TE) resistance training program. Thirty-four healthy adult females (21.1 +/- 2.7 y) were randomly divided into 4 groups: control (C), TS, TE, and LV. Workouts consisted of 3 exercises: leg press (LP), back squat (SQ), and knee extension (KE). Each subject was pre- and posttested for 1 repetition maximum (1RM), muscular endurance, maximal oxygen consumption (VO2max), muscular power, and body composition. After the pretesting, TS, TE, and LV groups attended a minimum of 16 out of 17 training sessions in which the LP, SQ, and KE were performed to fatigue for each of 3 sets. For each training session, TS trained at 6-10 RM and TE trained at 20-30 RM both with 1-2 second concentric/1-2 second eccentric; and LV trained at 6-10 RM, with 10 second concentric/4 s eccentric. Statistical significance was determined at an alpha level of 0.05. LV increased relative LP and KE 1 RM, but the percent increase was smaller than TS, and not different from C in the SQ. For muscular endurance, LV improved similarly to TE for LP and less than TS and TE for KE. Body composition improved for all groups including C (significant main effect). In conclusion, muscular strength improved with LV training however, TS showed a larger improvement. Muscular endurance improved with LV training, but not above what TE or TS demonstrated. For all other variables, there were no significant improvements for LV beyond what C demonstrated.  相似文献   

18.
The purpose of this study was to examine the effects of whey protein supplementation on body composition, muscular strength, muscular endurance, and anaerobic capacity during 10 weeks of resistance training. Thirty-six resistance-trained males (31.0 +/- 8.0 years, 179.1 +/- 8.0 cm, 84.0 +/- 12.9 kg, 17.8 +/- 6.6%) followed a 4 days-per-week split body part resistance training program for 10 weeks. Three groups of supplements were randomly assigned, prior to the beginning of the exercise program, in a double-blind manner to all subjects: 48 g per day (g.d(-1)) carbohydrate placebo (P), 40 g.d(-1) of whey protein + 8 g.d(-1) of casein (WC), or 40 g.d(-1) of whey protein + 3 g.d(-1) branched-chain amino acids + 5 g.d(-1) L-glutamine (WBG). At 0, 5, and 10 weeks, subjects were tested for fasting blood samples, body mass, body composition using dual-energy x-ray absorptiometry (DEXA), 1 repetition maximum (1RM) bench and leg press, 80% 1RM maximal repetitions to fatigue for bench press and leg press, and 30-second Wingate anaerobic capacity tests. No changes (p > 0.05) were noted in all groups for energy intake, training volume, blood parameters, and anaerobic capacity. WC experienced the greatest increases in DEXA lean mass (P = 0.0 +/- 0.9; WC = 1.9 +/- 0.6; WBG = -0.1 +/- 0.3 kg, p < 0.05) and DEXA fat-free mass (P = 0.1 +/- 1.0; WC = 1.8 +/- 0.6; WBG = -0.1 +/- 0.2 kg, p < 0.05). Significant increases in 1RM bench press and leg press were observed in all groups after 10 weeks. In this study, the combination of whey and casein protein promoted the greatest increases in fat-free mass after 10 weeks of heavy resistance training. Athletes, coaches, and nutritionists can use these findings to increase fat-free mass and to improve body composition during resistance training.  相似文献   

19.
Body composition is well known to be associated with endurance performance among adult skiers; however, the association among adolescent crosscountry and alpine skiers is inadequately explored. The study sample comprised 145 male and female adolescent subjects (aged 15-17 years), including 48 crosscountry skiers, 33 alpine skiers, and 68 control subjects. Body composition (%body fat [BF], %lean mass [LM], bone mineral density [grams per centimeter squared]) was measured with a dual-emission x-ray absorptiometer, and pulse and oxygen uptake was measured at 3 break points during incremental performance tests to determine physical fitness levels. Female crosscountry and alpine skiers were found to have significantly higher %LM (mean difference = 7.7%, p < 0.001) and lower %BF (mean difference = 8.1%, p < 0.001) than did female control subjects. Male crosscountry skiers were found to have lower %BF (mean difference = 3.2%, p < 0.05) and higher %LM (mean difference = 3.3%, p < 0.01) than did male alpine skiers and higher %LM (mean difference = 3.7%, p < 0.05) and %BF (mean difference = 3.2%, p < 0.05) than did controls. This study found strong associations between %LM and the onset of blood lactate accumulation and VO2max weight adjusted thresholds among both genders of the crosscountry skiing cohort (r = 0.47-0.67, p < 0.05) and the female alpine-skiing cohort (r = 0.77-0.79, p < 0.001 for all). This study suggests that body composition is associated with physical performance amongst adolescents.  相似文献   

20.
The purpose of the present study was to investigate the additive effects of ballistic training to a traditional heavy resistance training program on upper- and lower-body maximal strength. Seventeen resistance-trained men were randomly assigned to 1 of 2 groups: (i) a combined ballistic and heavy resistance training group (COM; age = 21.4 +/- 1.7 years, body mass = 82.7 +/- 15.1 kg) or (ii) a heavy resistance training group (HR; age = 20.1 +/- 1.2 years, body mass = 81.0 +/- 9.2 kg) and subsequently participated in an 8-week periodized training program. Training was performed 3 days per week, that is, 6-8 exercises per workout (6-8 traditional exercises for HR; 4-6 traditional + 2 ballistic exercises in COM) for 3-8 repetitions. A significant increase in 1-repetition maximum (1RM) squat was shown in both groups (COM = 15.2%; HR = 17.3%) with no difference observed between groups. However, 1RM bench press increased to a significantly greater extent (P = 0.04) in COM than HR (11.6% vs. 7.1%, respectively). For peak power attained during the jump squat, an interaction (P = 0.02) was observed where the 5.4% increase in COM and -3.2% reduction in HR were statistically significant. Nonsignificant increases were observed in peak plyometric push-up power in COM (8.5%) and HR (3.4%). Lean body mass increased significantly in both groups, with no between-group differences observed. The results of this study support the inclusion of ballistic exercises into a heavy resistance training program for increasing 1RM bench press and enhancing lower-body power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号