首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to examine the effects of training at the same time of day on diurnal variations of technical ability and swimming performance, to provide some recommendations with regard to adjusting training hours in accord with the time of day of competitive events. Eighteen participants volunteered for this study, and these were randomly assigned to either a morning training group (MTG, who trained only between 07:00 and 08:00 h, n = 6), an evening training group (ETG, who trained only between 17:00 and 18:00 h, n = 6), or a control group (CG, did not train but participated in all tests, n = 6). Swimming performance and technical ability – (i) stroke parameters: swim velocity (V), stroke rate (SR), and stroke length (SL); and (ii) motor organization: arm stroke phases and arm coordination (Idc) – were recorded 2 weeks before and 2 weeks after an 8-week regular training period. For all participants, the morning and evening tests were scheduled at the same time of day as the morning and evening training sessions. After training, the major finding of this study was that both ETG and the CG showed significantly lower P, V, SR, phase (B), phase (C), and Idc values in the morning than in the evening. However, P, V, SR, phase (B), phase (C), and Idc of the MTG measured at 07:00 and 17:00 h did not differ. Thus, training at a specific time of day increased performance in MTG at this time and modified the diurnal variation of swim performance. This study indicates that training at a specific time of day can result in marked changes in both swimming performance and technical aspects of swimming. Furthermore, training in the morning improved morning swimming performance and its components, and the amplitude of the morning–evening difference decreased. Training in the evening improved swimming performance and its components more in the evening than the morning, and the amplitude of the morning–evening difference increased.  相似文献   

2.
The aim of the present study was to examine the effects of time of day on stroke parameters and motor organization in front-crawl swimmers. In a randomized order, fourteen regional swimmers (age: 18.7 ± 1.6 years) performed maximal front crawls over 12.5 m during two experimental sessions; the morning sessions were conducted between 07:00 and 09:00 h and the evening experiments were conducted between 17:00 and 19:00 h. Stroke parameters (swim velocity, stroke rate [SR], and stroke length), motor organization (arm stroke phases and arm coordination) were calculated from aerial and underwater side-view cameras. Arm coordination was quantified in terms of an index of coordination (Idc). Results showed that oral temperature was significantly higher in the evening 36.8 ± 0.2 °C than in the morning 36.1 ± 0.2 °C (p < 0.001), with a morning–evening difference of ?0.7 ± 0.1 °C. Performance was also higher in the evening (7.4 ± 0.6 s) than in the morning (8.0 ± 0.8 s) (p < 0.001), with a morning–evening difference of 0.55 ± 0.30 s. Likewise, values of swim velocity and SR were higher in the evening than in the morning (p < 0.001) with morning–evening differences of ?0.10 ± 0.04 m s?1 and ?3.99 ± 2.91 cycles min?1, respectively. Percentage Idc increased significantly (p < 0.01) between the morning (?5.1 ± 6.5%) and evening (?1.6 ± 7.0%). It is concluded that maximal swimming trials are performed better in the evening than the morning, and that this might be explained by better stroke parameters and motor organization at this time.  相似文献   

3.
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

4.
The aim of this study was to examine the time-of-day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad . sec(-1), at 06 : 00 and 18 : 00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T(45)Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease-significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18 : 00 than at 06 : 00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

5.
This study analyzed diurnal variations in oxygen (O2) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23±5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (Tvent) and maximal oxygen consumption (VO2max); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00–08:30 h and 19:00–20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with Tvent. Gas exchanges were analyzed breath‐by‐breath and fitted using a mono‐exponential function. During moderate exercise, the time constant and amplitude of VO2 kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3±4 vs. 20.5±2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO2 responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

6.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

7.
Morning versus evening power output and repeated-sprint ability   总被引:1,自引:0,他引:1  
We investigated the effect of time-of-day on both maximal sprint power and repeated-sprint ability (RSA). Nine volunteers (22+/-4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13+/-3 versus 11+/-3 mmol/L(-1), p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958+/-112 vs. 915+/-133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5x6 sec test in the evening (11+/-2 vs. 7+/-3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time-of-day. This suggests that the beneficial effect of time-of-day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

8.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than in the morning. This diurnal variation is attributed to motivational, peripheral and central factors, and higher core and, possibly, muscle temperatures in the evening. This study investigated whether increasing morning rectal temperatures to evening resting values, by active or passive warm-ups, leads to muscle force production and power output becoming equal to evening values in motivated subjects. Ten healthy active males (mean ± SD: age, 21.2 ± 1.9 yrs; body mass, 75.4 ± 8 kg; height, 1.76 ± .06 m) completed the study, which was approved by the University Ethics Committee. The subjects were familiarized with the techniques and protocol and then completed four sessions (separated by at least 48 h): control morning (07:30 h) and evening (17:30 h) sessions (with an active 5-min warm-up) and then two further sessions at 07:30 h but proceeded by an extended active or passive warm-up to raise rectal temperature to evening values. These last two sessions were counterbalanced in order of administration. During each trial, three measures of handgrip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19 rad.s?1 through a 90° range of motion), and four measures of maximal voluntary contraction (MVC) on an isometric ergometer (utilizing the twitch-interpolation technique) were performed. Rectal and intra-aural temperatures, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the subjects had reclined for 30 min and after the warm-ups and prior to the measurement of handgrip and isokinetic and isometric ergometry. Muscle temperature was taken after the warm-up and immediately before the isokinetic and MVC measurements. Warm-ups were either active (cycle ergometer at 150 W) or passive (resting in a room at 35°C, relative humidity 45%). Data were analyzed using analysis of variance models with repeated measures. Rectal and intra-aural temperatures were higher at rest in the evening (.56°C and .74°C; p < .05) than in the morning, but there were no differences after the active or passive warm-ups, the subjects' ratings of thermal comfort reflecting this. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (~.31°C; p < .05). Grip strength, isokinetic knee flexion for peak torque and peak power at 1.05 rad.s?1, and knee extension for peak torque at 4.19 rad.s?1 all showed higher values in the evening. All other measures of strength or power showed a trend to be higher in the evening ( .10 > p > .05). There was no significant effect of active or passive warm-ups on any strength or power variable, and subjects reported maximal values for effort for each strength measure. In summary, effects of time of day were seen in some measures of muscle performance but, in this population of motivated subjects, there was no evidence that increasing morning rectal temperature to evening values by active or passive warm-up increased muscle strength to evening values. (Author correspondence: )  相似文献   

9.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than the morning. This diurnal variation is attributed to motivational, peripheral, and central factors and higher core and, possibly, muscle temperatures in the evening. This study investigated whether decreasing evening resting rectal temperatures to morning values, by immersion in a water tank, leads to muscle force production and power output becoming equal to morning values in motivated subjects. Ten healthy active males (mean?±?SD: age, 22.5?±?1.3 yrs; body mass, 80.1?±?7.8?kg; height, 1.72?±?0.05?m) completed the study, which was approved by the local ethics committee of the university. The subjects were familiarized with the techniques and protocol and then completed three sessions (separated by at least 48?h): control morning (07:30?h) and evening (17:30?h) sessions (with an active 5-min warm-up on a cycle ergometer at 150?W) and then a further session at 17:30?h but preceded by an immersion in cold water (~16.5?°C) to lower rectal temperature (Trec) to morning values. During each trial, three measures of grip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19?rad?s?1 through a 90° range of motion), and three measures of maximal voluntary contraction (MVC) on an isometric dynamometer (utilizing the twitch-interpolation technique) were performed. Trec, rating of perceived exertion (RPE), and thermal comfort (TC) were also measured after the subjects had reclined for 30?min at the start of the protocol and prior to the measures for grip, isokinetic, and isometric dynamometry. Muscle temperature was taken after the warm-up or water immersion and immediately before the isokinetic and MVC measurements. Data were analyzed using general linear models with repeated measures. Trec values were higher at rest in the evening (by 0.37?°C; p?<?0.05) than the morning, but values were no different from morning values immediately after the passive pre-cooling. However, Trec progressively decreased throughout the experiments, this being reflected in the subjects’ ratings of thermal comfort. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (by 0.39?°C; p?<?0.05). Right grip strength, isometric peak power, isokinetic knee flexion and extension for peak torque and peak power at 1.05?rad?s?1, and knee extension for peak torque at 4.19?rad?s?1 all showed higher values in the evening (a range of 3–14%), and all other measures of strength or power showed a statistical trend to be higher in the evening (0.10?>?p?>?0.05). Pre-cooling in the evening significantly reduced force or power variables towards morning values. In summary, effects of time of day were seen in some measures of muscle performance, in agreement with past research. However, in this population of motivated subjects, there was evidence that decreasing evening Trec to morning values by coldwater immersion decreased muscle strength to values similar to those found in the morning. It is concluded that diurnal changes in muscle performance are linked to diurnal changes in Trec. (Author correspondence: B.J.Edwards@ljmu.ac.uk)  相似文献   

10.
The aim of this study was to examine the time‐of‐day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad · sec?1, at 06∶00 and 18∶00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T45Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease–significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18∶00 than at 06∶00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

11.
The aim of the study was to investigate possible modifications caused by hand paddles in the relative contribution of the lift and drag forces of the hand and in the propelling efficiency, during front crawl swimming. Eight female swimmers swam 25 m with maximal intensity without paddles, with small (116 cm(2)) and with large paddles (268 cm(2)). Four cameras operating at 60 Hz were used to record the images and the Ariel Performance Analysis System was used for the digitisation. The results showed that, although during swimming with hand paddles the hand's velocity decreased, the greater propulsive area of the hand paddle caused an increase in the drag, lift, resultant and effective forces of the hand. However, the relative contribution of lift and drag forces on swimming propulsion was not modified, nor was the direction of the resultant force. Hand paddles also increased the propelling efficiency, the stroke length and the swimming velocity, mainly because of the larger propulsive areas of the hand in comparison with free swimming. However, the significant decrease of the stroke rate, might argue the effectiveness of hand paddle training, particularly when large paddles are used in front crawl swimming.  相似文献   

12.
不同品种美国山核桃叶绿素荧光参数日变化的研究   总被引:5,自引:0,他引:5  
以湖南省永州市冷水滩采穗圃中的美国山核桃为试材,研究了叶绿素荧光参数的日变化规律。结果表明:初始荧光(Fo)、最大荧光(Fm)、PSII原初光能转化效率(Fv/Fm)、光合量子产额(Yield)、光化学猝灭系数(qP)、非光化学猝灭系数(qN)和表观电子传递速率(ETR)均存在着明显的日变化。其中Fv/Fm、Fm、Yield、qP均呈先下降后上升的趋势,在中午强光下降低到最低值;qN则呈先上升后下降的趋势,在中午时分达到峰值;Fo呈下降趋势,部分品种傍晚稍有回升,但仍比早晨低;ETR日变化呈双峰曲线。不同品种间Fv/Fm、Yield、ETR、qP、qN对光强和温度的响应也存在着明显差异,可作为鉴定品种耐光抑制能力大小的指标。  相似文献   

13.
We investigated the effect of time‐of‐day on both maximal sprint power and repeated‐sprint ability (RSA). Nine volunteers (22±4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13±3 versus 11±3 mmol/L?1, p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958±112 vs. 915±133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5×6 sec test in the evening (11±2 vs. 7±3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time‐of‐day. This suggests that the beneficial effect of time‐of‐day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

14.
Sixteen normal healthy volunteers were randomized into two groups, receiving either low doses insulin infusion clamp study (8mU/M2/min) or high dose (40mU/M2/min) to determine the diurnal insulin clearance and sensitivity. Each subject received the assigned dose of insulin clamp twice; one in the morning (0800-1000) and the other in the evening (1800-2000), each with a precedent 9 hours of fasting, respectively. The results showed that there were diurnal variation of serum insulin clearance in the high dose study (AM:791 +/- 54ml/min/M2, PM:947 +/- 53ml/min/M2, p less than 0.01), and the small dose study (AM:411 +/- 32ml/min/M2, PM:716 +/- 87ml/min/M2, p less than 0.001). Diurnal variation of insulin sensitivity as judged by dividing glucose infusion rate by the ambient serum free insulin level (M/FI ration), was only noted in the low dose insulin infusion clamp study (AM:14.6 +/- 2.4, PM:10.5 +/- 1.1, p less than 0.05). In summary, at low physiological levels of insulin the insulin sensitivity is better in the morning, whereas at both high and low insulin levels the insulin clearance of normal subject is greater in the evening. The mechanism of this diurnal variation of insulin clearance and sensitivity awaits further studies.  相似文献   

15.
Diurnal type (chronotype) differentiates individuals on an axis between the extremes of evening type to morning type. These diurnal-type preferences are thought to be relatively stable, but follow-up studies are sparse. The study aims were (1) to compare cross-sectional studies of diurnal type preferences between two decades and (2) to analyze the consistency of diurnal-type preferences using a longitudinal dataset. We analyzed a total of 18?087 adult males from four datasets with information on diurnal type and age. Of these, 2144 were available for survival analysis and 567 for analysis of longitudinal diurnal consistency. Diurnal type was assessed by asking the individual to what extent they would rate themselves a morning or an evening person, categorized into four groups. Statistical tests for stability of diurnal type were based on transition matrices and p values obtained using likelihood ratios. Cox regression was used to calculate the relative risk of all-cause mortality in each of the four diurnal type groups. After direct age standardization, 9.5% (95% CI: 9.0–10.1%) of participants in the four datasets were evening types. The cross-sectional data yielded that morning types were less common in the 2000s than two decades earlier. The longitudinal dataset revealed a significant shift from evening type to another type from 1985 to 2008 (p?=?0.002). The relative risk of all-cause mortality was 1.3-fold (95% CI: 1.0–1.6; p?=?0.05) higher for evening types compared to morning types. At the population level, eveningness appears to have become more prevalent over recent decades. However, on the individual level, the more morningness the chronotype, the more persistent it remains with aging.  相似文献   

16.
The purpose of this investigation was to assess the effects of training and tapering at the same time of the day on the diurnal variations of short exercise performances. Thirty-one physically active men underwent 12 weeks of lower-extremity resistance training and 2 weeks of tapering. These subjects were matched and randomly assigned to a morning training group (MTG, training times 0700-0800 hours, n = 10), an evening training group (ETG, training times 1700-1800 hours, n = 11), and a control group (CG, completed all tests but did not train, n = 10). Muscular strength and power testing was conducted before (T0) and after 12 weeks of training (T1) and after 2 weeks of tapering (T2) in the morning (0700-0800 hours) and in the evening (1700-1800 hours). All morning and evening tests were performed in separate sessions (minimum interval = 36 hours) in a randomized design. In T0, the oral temperature and performances during the Wingate, vertical jump (squat jump and countermovement jump), and maximal voluntary contraction tests were higher in the evening than in the morning for all the groups. In T1, these diurnal variations were blunted in the MTG and persisted in the ETG and CG. In T2, the 2 weeks of tapering resulted in further time of day-specific adaptations and increases in short-term maximal performances. However, there was no significant difference in the relative increase between the MTG and the ETG after both training and tapering. From a practical point of view, if the time of competition is known, training and tapering sessions before a major competition must be conducted at the same time of the day at which one's critical performance is programmed. Moreover, if the time of the competition is not known, a tapering phase after resistance training program could be performed at any time of the day with the same benefit.  相似文献   

17.
The aim of this study was to examine the effects of training at the same time of the day on the diurnal variations of anaerobic performances to provide some recommendations to adjust training hours with the time of the day of competitive events. Thirty participants underwent 8 weeks of lower-extremity progressive resistance training performed 3 times per week designed to promote muscular strength and power. These subjects were randomly assigned to a morning training group (MTG, 07:00-08:00 hours, n = 10), an evening training group (ETG, 17:00-18:00 hours, n = 10), and a control group (CG, completed all tests but did not train, n = 10). Performance in the squat jump, the countermovement jump, the Wingate and 1 repetition maximum (1RM) during leg extension, leg curl, and squat tests was recorded just before and 2 weeks after an 8-week course of regular training. For all the subjects, the morning and evening tests were scheduled at the same time of the day as for the morning and evening training sessions. Before training, the results indicated a significant increase in performance from morning to evening tests (ca. 2.84-17.55% for all tests) for all groups. After training, the diurnal variations in anaerobic performances were blunted in the MTG. In fact, there was no significant difference in muscular power or strength between morning and evening tests. However, these intradaily variations in anaerobic performances persisted in the ETG and CG. From a practical point of view, adaptation to strength training is greater at the time of the day at which training was scheduled than at other times.  相似文献   

18.
The present study aimed to clarify whether swimming performance is affected by reflective markers being attached to the swimmer’s body, as is required for a kinematic analysis of swimming. Fourteen well-trained male swimmers (21.1 ± 1.7 yrs) performed maximal 50 m front crawl swimming with (W) and without (WO) 25 reflective markers attached to their skin and swimwear. This number represents the minimum required to estimate the body’s center of mass. Fifty meter swimming time, mid-pool swimming velocity, stroke rate, and stroke length were determined using video analysis. We found swimming time to be 3.9 ± 1.6% longer for W condition. Swimming velocity (3.3 ± 1.8%), stroke rate (1.2 ± 2.0%), and stroke length (2.1 ± 2.7%) were also significantly lower for W condition. To elucidate whether the observed reduction in performance was potentially owing to an additional drag force induced by the reflective markers, measured swimming velocity under W condition was compared to a predicted velocity that was calculated based on swimming velocity obtained under WO condition and an estimate of the additional drag force induced by the reflective markers. The mean prediction error and ICC (2,1) for this analysis of measured and predicted velocities was 0.014 m s−1 and 0.894, respectively. Reducing the drag force term led to a decrease in the degree of agreement between the velocities. Together, these results suggest that the reduction in swimming performance resulted, at least in part, from an additional drag force produced by the reflective markers.  相似文献   

19.
We developed an asymmetric double logistic curve-fitting procedure for circadian analysis that can determine the rate of change in variables during the day-to-night separately from the night-to-day transition for use in animal studies. We now have applied this procedure to 24-h systolic (SAP) and diastolic arterial pressure (DAP) and heart rate ambulatory recordings from 302 patients. In 292 cases, all parameters showed a pattern of higher day and lower night values. In men there was a similar rate of transition between day and night or from night to day for both SAP and DAP that lasted 3-4 h, indicating a symmetrical diurnal pattern. By contrast, women showed a faster rate of decrease in mean arterial pressure in the evening compared with men (P < 0.05) and therefore showed an asymmetric diurnal SAP pattern. For both men and women, there was a markedly greater rate of morning increase in heart rate compared with the rate of evening decrease (2.2- and 1.9-fold, respectively, P < 0.001). The logistic method provided a better fit than the square-wave or the cosinor method (P < 0.001) and more appropriately detected nondippers. We conclude that analysis of ambulatory recordings by a new logistic curve-fitting method reveals more rapid reductions in evening SAP in women than men but both have two- to threefold more rapid morning rates of tachycardia. The ability of the double logistic method to determine the diurnal blood pressure rates of change independently is key to determining new markers for cardiovascular risk.  相似文献   

20.
The aim of this study was to determine the effect of time of day on performance, pacing, and hormonal and metabolic responses during a 1000-m cycling time-trial. Nine male, recreational cyclists visited the laboratory four times. During the 1st visit the participants performed an incremental test and during the 2nd visit they performed a 1000-m cycling familiarization trial. On the 3rd and 4th visits, the participants performed a 1000-m TT at either 8 am or 6 pm, in randomized, repeated-measures, crossover design. The time to complete the time trial was lower in the evening than in the morning (88.2±8.7 versus 94.7±10.9 s, respectively, p<0.05), but there was no significant different in pacing. However, oxygen uptake and aerobic mechanical power output at 600 and 1000 m tended to be higher in the evening (p<0.07 and 0.09, respectively). There was also a main effect of time of day for insulin, cortisol, and total and free testosterone concentration, which were all higher in the morning (+60%, +26%, +31% and +22%, respectively, p<0.05). The growth hormone, was twofold higher in the evening (p<0.05). The plasma glucose was ∼11% lower in the morning (p<0.05). Glucagon, norepinephrine, epinephrine and lactate were similar for the morning and evening trials (p>0.05), but the norepinephrine response to the exercise was increased in the morning (+46%, p<0.05), and it was accompanied by a 5-fold increase in the response of glucose. Muscle recruitment, as measured by electromyography, was similar between morning and evening trials (p>0.05). Our findings suggest that performance was improved in the evening, and it was accompanied by an improved hormonal and metabolic milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号