首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the need to normalize, for body mass, explosive functional tasks in a population exhibiting diverse body masses. Measures investigated in elite college American football players attending the National Football League's annual combine (n = 1,136) were the 9.1-, 18.3-, and 36.6-m sprints, vertical and horizontal jumps, 18.3-m shuttle, and 3-cone drill. To determine the relationship between body mass and performance outcomes, Pearson's correlation coefficients (r) were generated using log-transformed data. Task-specific allometric exponents, accounting for body mass, were also determined. The strength of the correlations suggests that sprint and jump abilities are associated with body mass, whereas change-of-direction ability is not. The determined allometric exponents range between 0.296 and -0.463 for the sprint and jump tasks and are -0.022 and -0.006 for the 18.3-m shuttle and the 3-cone drill, respectively. In populations exhibiting relatively large variations in body mass, normalization of sprint and jump abilities is recommended, whereas normalization of change-of-direction ability is unwarranted. Novel suggestions derived from the present research are that sprint and jump abilities in diverse populations warrant normalization and that physical attributes associated with explosive functional movements deserve attribute-specific consideration when contemplating normalization.  相似文献   

2.
The purpose of this study was to investigate the relationships between the athletic skills measured at the National Football League (NFL) combine. The combine comprises the following tests: 36.6-m sprint with split times at 9.1 and 18.3 m, vertical and horizontal jumps, 18.3-m shuttle run, 3-cone drill, and 102.1-kg bench press. Draftees to the NFL who participated in the annual combine from 2005 to 2009 were included in the study (n = 1,136). Pearson's (r) correlations were calculated to determine the relationships between the tests, and coefficients of determination (r) were used to determine common variance. The 9.1-, 18.3-, and 36.6-m sprint times are nearly perfectly correlated (r ranges from 0.900 to 0.967) as are the change-of-direction ability tests, 18.3-m shuttle run, and 3-cone drill (r = 0.948), suggesting similar skills are being measured. Performance in both jumping tasks is more strongly associated with longer sprint distances, suggesting mechanisms such as the stretch-shortening cycle may be more important at maximal, or near-maximal, speeds. The correlations between change-of-direction ability and sprinting and jumping are generally much weaker (r ranges from 0.250 to -0.653), suggesting less association and independent motor skills. Although not particularly large correlation coefficients, bench press performance is positively correlated with outcomes in all running drills and inversely correlated with jump abilities, suggesting that in the observed cohort, upper body strength may be of little benefit to these tasks. Incorporation of a nonacceleration influenced (i.e., moving start) measure of maximal speed may be preferred if the intention of a test battery is to measure independent motor skills. Further, when constructing test batteries, either the 18.3-m shuttle or 3-cone drill is likely sufficient as a measure of change-of-direction ability. Test batteries should be constructed to measure independent motor skills.  相似文献   

3.
The purpose of this study was to investigate positional relationships between sprint and jump abilities and body mass in elite college American football players (n = 1,136). Data from the annual National Football League combine over the years 2005-2009 were examined. The measures included for examination were the 9.1-, 18.3-, 36.6-, and flying 18.3-m sprints and the vertical and horizontal jumps. Pearson's correlation coefficients (r) were calculated to determine the relationships between the tests, and coefficients of determination (r2) were used to determine common variance. With the exception of the relationship between the 9.1-m and the flying 18.3-m sprints, the relationships between all sprints are very strong. Vertical jump ability is more strongly associated with maximum speed, as compared with acceleration. Horizontal jump ability is similarly associated with maximum speed and acceleration. The 9.1-, 18.3-, and flying 18.3-m sprints and the jump tests would appear to measure independent skills. Stationary start sprints up to 36.6 m appear to be heavily influenced by acceleration and may thus measure similar characteristics. The flying 18.3-m sprint is recommended as a measure of maximum speed. Body mass was most strongly associated with performance in the lineman group. When body mass was controlled for, correlations weakened across all the groups. The role of body mass remains unclear. Regardless of sport, the present research supports the notion that the relationships between various sprint and jump abilities warrant positional consideration. Coaches and practitioners will be able to use the findings of this research to better test and monitor athletes requiring different skills.  相似文献   

4.
The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.  相似文献   

5.
6.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

7.
The aim of this study was to compare the effect of 2 repeated sprint training interventions on an intermittent peak running speed (IPRS) test designed for Australian Rules football. The test required participants to perform 10 × 10-m maximal efforts on an 80-m course every 25 seconds, for each of which the mean peak speed (kilometers per hour) was recorded to determine IPRS. The training interventions were performed twice weekly for 4 weeks immediately before regular football training. In the constant volume intervention (CVol), sprint repetition number remained at 10 (n = 9), and in the linear increase in volume (LIVol) intervention, repetition number increased linearly each week by 2 repetitions (n = 12). Intermittent peak running speed, 300-m shuttle test performance, and peak running speed were assessed before and upon completion of training. All measures were compared to a control group (CON; n = 8) in which players completed regular football training exclusively. Intermittent peak running speed performance in CVol and LIVol improved significantly (p < 0.01) by 5.2 and 3.8%, respectively, with no change in IPRS for CON. There were no differences in IPRS changes between CVol and LIVol. Additionally, peak running speed improved significantly (p < 0.01) by 5.1% for CVol, whereas 300-m shuttle performance improved significantly (p < 0.01) by 2.6% for LIVol only. Intermittent peak running speed, 300-m shuttle performance and peak running speed were improved after 4 weeks of training; however, progressively increasing sprint repetition number had no greater advantage on IPRS adaptation. Additionally, exclusive regular football training over a 4-week period is unlikely to improve IPRS, peak running speed, or 300-m shuttle performance.  相似文献   

8.
To investigate the positional physical requirements necessary to be drafted into the National Football League (NFL), data from the annual NFL combine over the years 2005-2009 were examined. Only those players invited to the combine and subsequently drafted in the same year (n = 1,136) were included in the study. Data from 8 combine physical performance tests were examined for 15 positions. Combine measures evaluated for the center, cornerback, defensive end, defensive tackle, free safety, fullback, inside linebacker, offensive guard, offensive tackle, outside linebacker, quarterback, running back, strong safety, tight end, and wide receiver positions were the 9.1-, 18.3-, and 36.6-m sprints, the vertical and broad jumps, the 18.3-m shuttle run, the 3-cone drill, and the 102.1-kg bench press for maximum repetitions and, from this, a predicted measure of 1 repetition maximum. A 1-way analysis of variance detected differences in all 9 performance measures (p < 0.01). Post hoc independent t-tests indicated that over most tests many positions exhibited outcomes significantly different from most other positions. Generally, lineman positions performed inferiorly in sprint, jump and change-of-direction ability measures and superiorly in the upper body strength measures. Conversely, defensive back positions were the worst performers in the upper body strength test, and wide receivers and defensive backs were the best performers in all other measures. In general, offensive and defensive positions that commonly compete directly against one another display similar physical characteristics. Any advantages (statistically significant and not) between positions in direct competition were consistently in favor of defensive positions. The results of the present research present position-specific profiles for each of 15 positions. Coaches and practitioners will be able to use the findings of this research to better prepare athletes for entry into the NFL.  相似文献   

9.
We assessed body composition (height, body mass, body mass index, body fat by densitometry, fat mass, fat-free mass, and lean/fat ratio) and performance (10- and 40-yd sprints, pro shuttle run, vertical jump, sit and reach, and bench press) in 77 National Collegiate Athletic Association Division III football players. Data were analyzed by position and playing status. Significant differences (p 相似文献   

10.
The aim of this study was to compare the effect of short-sprint repetition and long-sprint repetition training (SST, LST), matched for total distance, on selected fitness components in young soccer players. Thirty young (14-15 years) soccer players were randomly assigned to either the short-sprint training group or long-sprint training group and completed 2 similar sets of fitness tests before and after 7 weeks of training. The 2 training programs consisted of SST (4-6 sets of 4 × 50-m all-out sprint) and LST (4-6 sets of 200-m run at 85% of maximum speed), each performed 3 times a week. Before training, there were no baseline between-group differences in predicted VO2max, standing long jump, 30-m sprint time, 4 × 10-m shuttle running time, and 250-m running time. Both training programs led to a significant improvement in VO2max (predicted from the 20-m shuttle run, p < 0.01), with no between-group difference (p = 0.14). Both training programs also led to a significant improvement in the anaerobic fitness variables of 30-m sprint time (p < 0.01), 4 × 10-m shuttle running time (p < 0.01), and 250-m running time (p < 0.01), with no between-group differences. Neither of the training programs had a significant effect on standing long jump (p = 0.21). The study showed that long, near-maximal sprints, and short, all-out sprint training, matched for total distance, are equally effective in enhancing both the aerobic and anaerobic fitness of young soccer players. Therefore, to maintain a player's training interest and enthusiasm, coaches may alternate between these methods during the busy soccer season.  相似文献   

11.
Repeated sprint testing is gaining popularity in team sports, but the methods of data analysis and relationships to speed and endurance qualities are not well described. We compared three different methods for analyzing repeated sprint test results, and we quantified relationships between repeated sprints, short sprints, and endurance test scores. Well-trained male junior Australian Football players (n = 60, age 18.1 +/- 0.4 years, height 1.88 +/- 0.07 m, mass 82.0 +/- 8.1 kg; mean +/- SD) completed a 6 x 30-m repeated sprint running test on a 20-second cycle, a 20-m sprint test (short sprint), and the 20-m multistage shuttle run for endurance. Repeated sprint results were evaluated in three ways: total time for all six sprints (TOTAL), percent change from predicted times (PRED) from the fastest 30-m sprint time, and percent change from first to last sprint (CHANGE). We observed a very large decrement (CHANGE 6.3 +/- 0.7%, mean +/- 90% confidence limits) in 30-m performance from the first to last sprint (4.16 +/- 0.10 to 4.42 +/- 0.11 seconds, mean +/- SD). Results from TOTAL were highly correlated with 20-m sprint and 20-m multistage shuttle run tests. Performance decrements calculated by PRED were highly correlated with TOTAL (r = 0.91), but neither method was directly comparable with CHANGE (r = -0.23 and r = 0.12 respectively). TOTAL was moderately correlated with fastest 20-m sprint time (r = 0.66) but not the 20-m multistage shuttle run (r = -0.20). Evaluation of repeated sprint testing is sensitive to the method of data analysis employed. The total sprint time and indices of the relative decrement in performance are not directly interchangeable. Repeated sprint ability seems more related to short sprint qualities than endurance fitness.  相似文献   

12.
The purpose of this study was to compare selected physical fitness and performance variables between National Collegiate Athletic Association (NCAA) Division I and II football players. The subjects included offensive and defensive starters, excluding kickers and punters from 26 NCAA Division I and 23 Division II teams. Offensive players were grouped and compared by the following positions: quarterback, running back, wide receiver, tight end, and line. Defensive players were grouped and compared by the following positions: line, linebackers, and backs. Division I players were better in 58 of 117 comparisons (p < or = 0.01). Division II players were not found to be better in any of the variables studied.  相似文献   

13.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

14.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

15.
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed.  相似文献   

16.
The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.  相似文献   

17.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

18.
The purpose of this study was to determine the changes in physical performance after a 6-week skill-based conditioning training program in male competitive volleyball players. Sixteen male volleyball players (mean ± SD: age 22.3 ± 3.7 years, body height 190.7 ± 4.2 cm, and body mass 78.4 ± 4.5 kg) participated in this study. The players were tested for sprinting (5- and 10-m sprint), agility, and jumping performance (the vertical-jump test, the spike-jump test, and the standing broad jump [SBJ]). Compared with pretraining, there was a significant improvement in the 5- and 10-m speed. There were no significant differences between pretraining and posttraining for lower-body muscular power (vertical-jump height, spike-jump height, and SBJ) and agility. Based on our results, it could be concluded that a preseason skill-based conditioning program does not offer a sufficient stimulus for volleyball players. Therefore, a general conditioning and hypertrophy training along with specific volleyball conditioning is necessary in the preseason period for the development of the lower-body strength, agility and speed performance in volleyball players.  相似文献   

19.
20.
The purpose of this study was to determine the performance and hormonal responses to a 15-week off-season training program for American football. Nine skill position players from a National Collegiate Athletic Association (NCAA) Division I-A football team participated as subjects in this study. Following 4 weeks of weight training (phase I), subjects performed weight training concurrently with high-volume conditioning drills (phase II). Phase III consisted of 15 spring football practice sessions executed over a 30-day period. Performance and hormonal changes were assessed prior to phase I, and following phases I, II, and III. Maximal strength was significantly increased (p < 0.05) for all strength tests during phase I. Squat and power clean values decreased following phase II (p < 0.05), with all values returning to baseline upon completion of phase III. Sprinting speed significantly worsened during phase I (p < 0.05), but then returned to baseline during phase III. Vertical jump and agility improved during phase I (p < 0.05), with vertical jump remaining unchanged for the duration of the study and agility returning to baseline following phase II. Testosterone levels decreased during phase II (p < 0.05) prior to returning to baseline levels during phase III. Cortisol and the testosterone/cortisol ratio remained unchanged during the course of the investigation. Even though overtraining did not occur in the current investigation, a significant maladaptation in performance did occur subsequent to phase II. For this particular athletic population, a strength and conditioning program utilizing a reduced training volume-load may prove more effective for improving performance in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号