首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A human Epstein-Barr virus-transformed B-cell line (IC.1) was characterized for cell surface antigen profile and permissivity to immunodeficiency virus (HIV) infection. According to cocultivation assay with MT2 cells, P24 release, and immunofluorescence assay, complement-sufficient serum enhanced in vitro infection of IC.1 cells. Enhancement occurs independently of the presence of HIV type 1-specific antibodies, although more efficiently when they are present. Blocking experiments with monoclonal antibodies demonstrated that complement receptor type 2 mediates this phenomenon and that the CD4 molecule is required for infection. Enhancement of in vitro infection on IC.1 cells appears closely related to previously described complement-mediated, antibody-dependent enhancement of HIV infection on the T-lymphoblastoid cell line MT2 (W. E. Robinson, Jr., D. C. Montefiori, and W. M. Mitchell, Lancet i:790-794, 1988).  相似文献   

2.
TLR2 activation plays a crucial role in Neisseria gonorrheae-mediated enhancement of HIV infection of resting CD4(+) T cells. We examined signaling pathways involved in the HIV enhancing effect of TLR2. TLR2 but not IL-2 signals promoted HIV nuclear import; however, both signals were required for the maximal enhancing effect. Although TLR2 signaling could not activate T cells, it increased IL-2-induced T cell activation. Cyclosporin A and IkBα inhibitor blocked TLR2-mediated enhancement of HIV infection/nuclear import. PI3K inhibitor blocked HIV infection/nuclear import and T cell activation and exerted a moderate inhibitory effect on cell cycle progression in CD4(+) T cells activated by TLR2/IL-2. Blockade of p38 signaling suppressed TLR2-mediated enhancement of HIV nuclear import/infection. However, the p38 inhibitor did not have a significant effect on T cell activation or TCR/CD3-mediated enhancement of HIV infection/nuclear import. The cell cycle arresting reagent aphidicolin blocked TLR2- and TCR/CD3-induced HIV infection/nuclear import. Finally, cyclosporin A and IκBα and PI3K inhibitors but not the p38 inhibitor blocked TLR2-mediated IκBα phosphorylation. Our results suggest that TLR2 activation enhances HIV infection/nuclear import in resting CD4(+) T cells through both T cell activation-dependent and -independent mechanisms.  相似文献   

3.
4.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

5.
Sexually transmitted infections (STIs) increase the likelihood of HIV transmission. Defensins are part of the innate mucosal immune response to STIs and therefore we investigated their role in HIV infection. We found that human defensins 5 and 6 (HD5 and HD6) promoted HIV infection, and this effect was primarily during viral entry. Enhancement was seen with primary viral isolates in primary CD4(+) T cells and the effect was more pronounced with R5 virus compared with X4 virus. HD5 and HD6 promoted HIV reporter viruses pseudotyped with vesicular stomatitis virus and murine leukemia virus envelopes, indicating that defensin-mediated enhancement was not dependent on CD4 and coreceptors. Enhancement of HIV by HD5 and HD6 was influenced by the structure of the peptides, as loss of the intramolecular cysteine bonds was associated with loss of the HIV-enhancing effect. Pro-HD5, the precursor and intracellular form of HD5, also exhibited HIV-enhancing effect. Using a cervicovaginal tissue culture system, we found that expression of HD5 and HD6 was induced in response to Neisseria gonorrhoeae (GC, for gonococcus) infection and that conditioned medium from GC-exposed cervicovaginal epithelial cells with elevated levels of HD5 also enhanced HIV infection. Introduction of small interfering RNAs for HD5 or HD6 abolished the HIV-enhancing effect mediated by GC. Thus, the induction of these defensins in the mucosa in the setting of GC infection could facilitate HIV infection. Furthermore, this study demonstrates the complexity of defensins as innate immune mediators in HIV transmission and warrants further investigation of the mechanism by which defensins modulate HIV infection.  相似文献   

6.
Similar to other pathogens, HIV can directly activate the complement pathway even in the absence of antibodies. During and after seroconversion, HIV-specific antibodies enhance the activation of complement and increase deposition of complement fragments on virions dramatically. However, even in the presence of HIV-specific antibodies, no or only poor lysis occurs. HIV has adapted different protection mechanisms to keep complement activation under the threshold necessary to induce virolysis. In addition to its own envelope proteins, the viral envelope contains membrane-anchored host molecules. Among those are complement regulatory proteins that remain functionally active on the surface of HIV and turn down the complement cascade. In addition, serum proteins with complement regulatory activities become secondarily attached onto the virus, thereby enhancing the protection of HIV against complement-mediated damage. Therefore, opsonised virions accumulate in HIV-infected individuals, which subsequently interact with complement receptor (CR) expressing cells. This review is mainly focused on these interactions, which result either in infection of CR-positive cells with high efficiency, or retention of viral particles on their surface via CRs, thereby promoting transmission of virus to other permissive cells.  相似文献   

7.
Four of eight human monoclonal antibodies (huMAbs) to gp41 were identified which could enhance human immunodeficiency virus type 1 (HIV-1) infection in vitro by complement-mediated antibody-dependent enhancement (C'-ADE). These enhancing huMAbs were mapped to two distinct domains on the HIV-1 gp41 transmembrane glycoprotein by using synthetic peptides. The first domain, amino acids 579 to 613 (peptide AA579-613), was recognized by three of the four enhancing huMAbs. The AA579-613 peptide blocked C'-ADE of HIV-1 infection in vitro whether it was mediated by these three huMAbs or by human polyclonal anti-HIV serum. The second domain, amino acids 644 to 663, bound the remaining enhancing huMAb. This peptide weakly blocked C'-ADE mediated by the huMAb and by an HIV immune globulin fraction but did not block C'-ADE mediated by a patient's serum. The patient's serum did react with the peptide in an enzyme immunoassay. The huMAbs to the two domains could interact in vitro to enhance HIV-1 infection in a synergistic manner. These two domains, which bind enhancing antibodies, are conserved between HIV-1 isolates as well as between HIV-2 and simian immunodeficiency virus isolates. These data demonstrate the existence of two conserved regions within the HIV-1 gp41 which bind enhancing antibodies; these two domains, amino acids 579 to 613 and 644 to 663, may prove important in HIV-1 vaccine development and in immunopathogenesis of HIV-1 infection.  相似文献   

8.

Background

Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity.

Results

We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE.

Conclusions

Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.  相似文献   

9.
In the present study we demonstrate that both X4- and R5-tropic HIV-1 strains are able to infect the human epithelial cell line HT-29. Infection was enhanced 2-fold when HIV was added to semen before contact with the cell cultures. The enhancing effect of semen was complement dependent, as evidenced by blockage of generation of C3a/C3a(desArg) in semen by heat or EDTA treatment of semen and suppression of semen-dependent enhancement with mAbs directed to complement receptor type 3 (CD11b/CD18) and soluble CD16. Infection of HT-29 cells was assessed by the release of p24 Ag in cultures and semiquantitative PCR of the HIV-1 pol gene. Inhibition of infection of HT-29 by stromal cell-derived factor 1 was decreased in the case of semen-opsonized X4- and R5-tropic virus compared with unopsonized virus. In contrast, inhibition of infection by RANTES was increased for opsonized X4-tropic HIV-1 compared with unopsonized virus. Taken together these observations indicate that activation of complement in semen may play an enhancing role in mucosal transmission of HIV-1 by facilitating infection of epithelial cells and/or enhancing infection of complement receptor-expressing target cells in the mucosa.  相似文献   

10.
Hepatitis C virus (HCV)-specific T-cell responses are rarely detected in peripheral blood, especially in the presence of human immunodeficiency virus (HIV) coinfection. Based on recent evidence that T-regulatory cells may be increased in chronic HCV, we hypothesized that functional blockade of regulatory cells could raise HCV-specific responses and might be differentially regulated in the setting of HIV coinfection. Three groups of subjects were studied: HCV monoinfected, HCV-HIV coinfected, and healthy controls. Frequencies of peripheral T cells specific for peptides derived from HCV core, HIV type 1 p24, and recall antigens were analyzed by gamma interferon (IFN-gamma) enzyme-linked immuno-spot assay. HCV-specific T-cell responses were very weak in groups with HCV and HCV-HIV infections. Addition of blocking antibodies against transforming growth factor beta1 (TGF-beta1), -2, and -3 and interleukin-10 specifically increased the HCV-specific T-cell responses in both infected groups; however, this increase was attenuated in the group with HCV-HIV coinfection compared to HCV infection alone. No increase in recall antigen- or HIV-specific responses was observed. Flow cytometric sorter analysis demonstrated that regulatory-associated cytokines were produced by HCV-specific CD3(+)CD8(+)CD25(-) cells. Enhancement of the IFN-gamma effect was observed for both CD4 and CD8 T cells and was mediated primarily by TGF-beta1, -2, and -3 neutralization. In conclusion, blockade of TGF-beta secretion could enhance peripheral HCV-specific T-cell responses even in the presence of HIV coinfection.  相似文献   

11.
In the present study, we demonstrated that opsonization of primary HIV-1 with human complement enhances infection of immature monocyte-derived dendritic cells (iDC) and transmission in trans of HIV to autologous CD4(+) T lymphocytes. Infection of iDC by opsonized primary R5- and X4-tropic HIV was increased 3- to 5-fold as compared with infection by the corresponding unopsonized HIV. Enhancement of infection was dependent on CR3 as demonstrated by inhibition induced by blocking Abs. The interaction of HIV with CCR5 and CXCR4 on iDC was affected by opsonization. Indeed, stromal-derived factor-1 was more efficient in inhibiting infection of iDC with opsonized R5-tropic HIV-1(BaL) (45%) than with heat-inactivated complement opsonized virus and similarly RANTES inhibited more efficiently infection of iDC with opsonized X4-tropic HIV-1(NDK) (42%) than with heat-inactivated complement opsonized virus. We also showed that attachment of complement-opsonized virus to DC-specific ICAM-grabbing nonintegrin (DC-SIGN) molecule on iDC and HeLa DC-SIGN(+) CR3(-) cells was 46% and 50% higher compared with heat-inactivated complement opsonized virus, respectively. Hence, Abs to DC-SIGN suppressed up to 80% and 60% the binding of opsonized virus to HeLa cells and iDC, respectively. Furthermore, Abs to DC-SIGN inhibited up to 70% of the infection of iDC and up to 65% of infection in trans of autologous lymphocytes with opsonized virus. These results further demonstrated the role of DC-SIGN in complement opsonized virus uptake and infection. Thus, the virus uses complement to its advantage to facilitate early steps leading to infection following mucosal transmission of HIV.  相似文献   

12.
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing, dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection, increasing viral replication and the release of cytokines and vasoactive mediators, culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however, antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology, we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive, directed against either envelope or premembrane proteins, and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation, even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies, while lowering the risk of dengue shock syndrome.  相似文献   

13.
A Werner  G Winskowsky    R Kurth 《Journal of virology》1990,64(12):6252-6256
The CD4 molecule is expressed on T-helper cells and serves as the cellular receptor for the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for the simian immunodeficiency viruses SIVmac and SIVagm. HIV-1, HIV-2, and SIVmac infectivity can be blocked by monoclonal antibodies (MAbs) directed against the CD4 molecule and by soluble CD4 proteins (sCD4). In the present study, we demonstrated not only lack of inhibition, but 10- to 100-fold sCD4-dependent enhancement of SIVagm infectivity of human T-cell lymphoma lines, although SIVagm infection was blocked by MAbs OKT4a and Leu3a. SIVagm enhancement with sCD4 was suppressed by MAbs OKT4a and Leu3a to levels observed without addition of sCD4. The infectivity of all four tested SIVagm variants was enhanced by sCD4 on all tested lymphoma cell lines. These results suggest a second step (second or secondary receptor) required for enhancing virus entry into the cell and may have serious implications for approaches to the treatment of acquired immunodeficiency syndrome on the basis of modified sCD4 molecules.  相似文献   

14.
To characterize the role of CD4 in human immunodeficiency virus type 1 (HIV-1) infection of macrophages, we examined the expression of CD4 by primary human monocyte-derived macrophages and studied the effect of recombinant soluble CD4 and anti-CD4 monoclonal antibodies on HIV-1 infection of these cells. Immunofluorescence and Western blot (immunoblot) studies demonstrated that both monocytes and macrophages display low levels of surface CD4, which is identical in mobility to CD4 in lymphocytes. Recombinant soluble CD4 and the anti-CD4 monoclonal antibody Leu3a blocked infection of macrophages by three different macrophage-tropic HIV isolates, and the cytopathic effects of HIV-1 infection were similarly prevented. Dose-response experiments using a prototype isolate which replicates in both macrophages and T lymphocytes showed that recombinant soluble CD4 inhibited infection of macrophages more efficiently than in lymphocytes. These results indicate that CD4 is the dominant entry pathway for HIV-1 infection of macrophages. In addition, recombinant soluble CD4 effectively blocks HIV-1 infection by a variety of macrophage-tropic strains and thus has the potential for therapeutic use in macrophage-dependent pathogenesis in HIV disease.  相似文献   

15.
HIV particles are detected extracellularly in lymphoid tissues, a major reservoir of the virus. We previously reported that a polymerized form of fibronectin (FN), superfibronectin (sFN), as well as a fragment of FN, III1-C, enhanced infection of primary CD4(+) T cells by HIV-1IIIB. We now show that sFN enhances infection of primary CD4(+) T cells by both R5 and X4 strains of HIV-1. Using HIV pseudotyped with different envelope glycoproteins (gp120) and HOS cells transfected with various chemokine receptors alone or in combination with the CD4 molecule, we show that sFN-mediated enhancement requires the CD4 receptor and does not alter the specificity of gp120 for different chemokine receptors. Because the III1-C fragment also resulted in enhancement, we asked whether proteolysis of FN generated fragments capable of enhancing HIV infection. We found that progressive proteolysis of FN by chymotrypsin correlates with an enhancement of HIV infection in both primary CD4(+) T cells and the IG5 reporter cell line. Furthermore, incubation of HIV with sFN significantly prolonged infectivity at 37 degrees C compared with dimeric FN or BSA. In conclusion, these results indicate that polymerized (matrix) or degraded (inflammation-associated), but not dimeric (plasma), FN are capable of enhancing infection by HIV-1, independent of the coreceptor specificity of the strains. Moreover, virions bound to matrix FN maintain infectivity for longer periods of time than do virions in suspension. This study suggests that matrix proteins and their conformational status may play a role in the pathogenesis of HIV.  相似文献   

16.
K A Page  N R Landau    D R Littman 《Journal of virology》1990,64(11):5270-5276
We constructed a recombinant human immunodeficiency virus (HIV) vector to facilitate studies of virus infectivity. A drug resistance gene was inserted into a gp160- HIV proviral genome such that it could be packaged into HIV virions. The HIV genome was rendered replication defective by deletion of sequences encoding gp160 and insertion of a gpt gene with a simian virus 40 promoter at the deletion site. Cotransfection of the envelope-deficient genome with a gp160 expression vector resulted in packaging of the defective HIV-gpt genome into infectious virions. The drug resistance gene was transmitted and expressed upon infection of susceptible cells, enabling their selection in mycophenolic acid. This system provides a quantitative measure of HIV infection, since each successful infection event leads to the growth of a drug-resistant colony. The HIV-gpt virus produced was tropic for CD4+ human cells and was blocked by soluble CD4. In the absence of gp160, noninfectious HIV particles were efficiently produced by cells transfected with the HIV-gpt genome. These particles packaged HIV genomic RNA and migrated to the same density as gp160-containing virions in a sucrose gradient. This demonstrates that HIV virion formation is not dependent on the presence of a viral envelope glycoprotein. Expression of a murine leukemia virus amphotropic envelope gene in cells transfected with HIV-gpt resulted in the production of virus capable of infecting both human and murine cells. These results indicate that HIV can incorporate envelope glycoproteins other than gp160 onto particles and that this can lead to altered host range. Like HIV type 1 and vesicular stomatitis virus(HIV) pseudotypes, gp-160+ HIV-gpt did not infect murine NIH 3T3 cells that bear human CD4, confirming that these cells are blocked at an early stage of HIV infection.  相似文献   

17.
A successful prophylactic vaccine is characterized by long-lived immunity, which is critically dependent on CD4 T cell-mediated helper signals. Indeed, most licensed vaccines induce antigen-specific CD4 T cell responses, in addition to high-affinity antibodies. However, despite the important role of CD4 T cells in vaccine design and natural infection, few studies have characterized HIV-specific CD4 T cells due to their preferential susceptibility to HIV infection. To establish at the population level the impact of HIV-specific CD4 T cells on viral control and define the specificity of HIV-specific CD4 T cell peptide targeting, we conducted a comprehensive analysis of these responses to the entire HIV proteome in 93 subjects at different stages of HIV infection. We show that HIV-specific CD4 T cell responses were detectable in 92% of individuals and that the breadth of these responses showed a significant inverse correlation with the viral load (P = 0.009, R = -0.31). In particular, CD4 T cell responses targeting Gag were robustly associated with lower levels of viremia (P = 0.0002, R = -0.45). Importantly, differences in the immunodominance profile of HIV-specific CD4 T cell responses distinguished HIV controllers from progressors. Furthermore, Gag/Env ratios were a potent marker of viral control, with a high frequency and magnitude of Gag responses and low proportion of Env responses associated with effective immune control. At the epitope level, targeting of three distinct Gag peptides was linked to spontaneous HIV control (P = 0.60 to 0.85). Inclusion of these immunogenic proteins and peptides in future HIV vaccines may act as a critical cornerstone for enhancing protective T cell responses.  相似文献   

18.
Antibodies (Ab) specific for epitopes on HIV glycoprotein gp120 or gp41 can inhibit or enhance HIV infection of human cellsin vitro. These effects may have significant implications both for the pathogenesis of chronic HIV infection and for vaccine development. A particularly puzzling findingin vitro is antibody dependent enhancement (ADE) at low concentrations of Ab while high concentrations of the same antibody inhibit infection. Similar phenomena have been observed for other enveloped viruses. Antibodies can inhibit infection by several mechanisms. However, by binding to receptors on target cells, virus bound antibodies can also enhance adhesion to these cells and thereby facilitate infection. We propose a mathematical model that describes how these two processes interact and hereby provide an explanation for the observed enhancement/neutralization phenomena. Simulation results were validated with good agreement against empirical data from antibody dependent enhancement of HIV infection of monocytoid (U937) cellsin vitro, and the model should be applicable to otherin vitro systems involving different cells and viruses.The model indicates that for the common type of HIV neutralizing antibody, acting at a post-CD4-binding step, there is a neutralizing window defined by the affinity and concentration of antibody.  相似文献   

19.
It is known that antibodies to dengue viruses at subneutralizing concentrations enhance dengue virus infection of Fc gamma R+ cells. This phenomenon called antibody-dependent enhancement (ADE) occurs when virus-antibody complexes bind to the Fc gamma R via the Fc portion of the Ig. It has been hypothesized that ADE may be responsible for the pathogenesis of the severe manifestations of dengue virus infection including dengue hemorrhagic fever/dengue shock syndrome. To further analyze the mechanisms of ADE, we prepared bispecific antibodies by chemically cross-linking antidengue virus antibodies to antibodies specific for Fc gamma RI or Fc gamma RII and the non-Fc R molecules beta2 microglobulin, CD15 or CD33 and examined whether these bispecific antibodies could enhance infection. Bispecific antibodies targeting dengue virus to Fc gamma RI or Fc gamma RII enhanced dengue virus infection, consistent with previous reports using conventional antibodies. Furthermore, bispecific antibodies targeting dengue virus to beta2 microglobulin, CD15 or CD33 also enhanced dengue virus infection. Bispecific antibody mediated ADE was inhibited by pretreating the cells with the appropriate blocking mAb. These results indicate that cell surface molecules other than Fc gamma R can mediate ADE and suggest that the Fc gamma R does not provide a unique signal necessary for enhanced infection. We hypothesize that directing dengue virus to the cell surface by a bispecific antibody facilitates the interaction between dengue virus and its receptor, thereby increasing its infectivity.  相似文献   

20.
Antibody-dependent enhancement of virus infection is a process whereby virus-antibody complexes initiate infection of cells via Fc receptor-mediated endocytosis. We sought to investigate antibody-dependent enhancement of feline infectious peritonitis virus infection of primary feline peritoneal macrophages in vitro. Enhancement of infection was assessed, after indirect immunofluorescent-antibody labelling of infected cells, by determining the ratio between the number of cells infected in the presence and absence of virus-specific antibody. Infection enhancement was initially demonstrated by using heat-inactivated, virus-specific feline antiserum. Functional compatibility between murine immunoglobulin molecules and feline Fc receptors was demonstrated by using murine anti-sheep erythrocyte serum and an antibody-coated sheep erythrocyte phagocytosis assay. Thirty-seven murine monoclonal antibodies specific for the nucleocapsid, membrane, or spike proteins of feline infectious peritonitis virus or transmissible gastroenteritis virus were assayed for their ability to enhance the infectivity of feline infectious peritonitis virus. Infection enhancement was mediated by a subset of spike protein-specific monoclonal antibodies. A distinct correlation was seen between the ability of a monoclonal antibody to cause virus neutralization in a routine cell culture neutralization assay and its ability to mediate infection enhancement of macrophages. Infection enhancement was shown to be Fc receptor mediated by blockade of antibody-Fc receptor interaction using staphylococcal protein A. Our results are consistent with the hypothesis that antibody-dependent enhancement of feline infectious peritonitis virus infectivity is mediated by antibody directed against specific sites on the spike protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号