首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses to light recorded by means of intracellular microelectrodes in isolated heads kept in oxygenated Ringer solution consist of a slow depolarization. Light adaptation increases the rates of depolarization and repolarization and decreases the amplitude of the response. Qualitatively these changes are similar to those observed in Limulus by Fuortes and Hodgkin. They are rapidly reversible during dark adaptation. In retinula cells of the drone eye a large single spike is recorded superimposed on the rising phase of the slow potential. The spike is a regenerative phenomenon; it can be triggered with electric current and is markedly reduced, sometimes abolished by tetrodotoxin. In rare cases cells were found which responded to light with a train of spikes. This behavior was only found under "unusual" experimental conditions; i.e., towards the end of a long experiment, during impalement, or at the beginning of responses to steps of strongly light-adapted preparations.  相似文献   

2.
Summary ERG amplitude facilitation, observed in the eye ofAtta sexdens after light adaptation, was studied as a function of duration and intensity of adaptation, of dark interval between adapting and test stimuli, and of level of steady background illumination. Results show that sensitivity facilitation in this eye cannot be regarded as a minor effect since it covers a 2 log unit range, the same as that obtained for conditions that produce sensitivity reduction. Maximum facilitation occurs with short and intense light adaptation. The time span of the effect is close to 2 min, and its maximum amplitude may be attained up to 20 s after light adaptation. Increase in background illumination gradually erases facilitation. However, the facilitated response is less sensitive to background illumination than the dark adapted response. Long durations of light adaptation cause ERG decrease, or inhibition. A comparison of these two end results of light adaptation suggests that they arise from different processes, perhaps with distinct origins.Supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo, to the senior author (Contract n 71/1141)With a Fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (N 74/388)We wish to express our appreciation to Henrique Fix for his editorial assistance, and to Celia Jablonka for laboratory help.  相似文献   

3.
Summary Photoreceptor cells of the drone,Apismellifera , have a voltage-gated Na+ membrane conductance that can be blocked by tetrodotoxin (TTX) and generates an action potential on abrupt depolarization: an action potential is triggered by the rising phase of a receptor potential evoked by an intense light flash (Autrum and von Zwehl 1964; Baumann 1968). We measured the intracellular voltage response to a small (9%), brief (30 ms) decrease in light intensity from a background, and found that its amplitude was decreased by 1M TTX. The response amplitude was maximal when the background intensity depolarized the cell to –38 mV. With intensities depolarizing the cell membrane to –45 to –33 mV the average response amplitude was decreased by TTX from 1.2mV to 0.5mV. TTX is also known to decrease the voltage noise during steady illumination (Ferraro et al. 1983) but, despite this, the ratio of peak-to-peak signal to noise was, on average, decreased by TTX. The results suggest that drone photoreceptors use voltage-gated Na+ channels for graded amplification of responses to small, rapid changes in light intensity.Abbreviations TTX tetrodotoxin - V i intracellular potential with respect to the bath - V o extracellular potential - V m,V i-V o approximate transmembrane potential - S amplitude of the voltage response to an 8.9% decrease in light intensity - N voltage noise, usually measured as root mean square voltage deviation as described in Methods  相似文献   

4.
The influence of changes in the ionic composition of the bathing medium on responses of the retinula cell of the honeybee drone to light was examined by means of intracellular microelectrodes. The resting potential of the cell was influenced mainly by the concentration of K. The peak of the receptor potential (the transient), which in a normal solution and with strong light approaches zero membrane potential, overshot this level in a K-rich solution. An increase in the concentration of K also raised the level of the steady-state phase of the receptor potential (the plateau). The amplitude of the receptor potential was decreased and the spike potential rapidly abolished when Na was replaced by either sucrose, choline, or Tris. In a Ca-free solution the amplitude of the response and especially that of the plateau, was increased. An increase in Ca had the opposite effects. All these changes were reversible. An attempt was made to interpret the receptor and spike potentials in terms of passive movements of Na and K across the membrane of the retinula cell. The major difficulty encountered was to find an explanation for the persistence of an appreciable fraction of the transient and the plateau in preparations kept up to 12 hr in a solution in which all the Na had been replaced by choline, Tris, or sucrose.  相似文献   

5.
In Limulus ventral photoreceptors, illumination not only increases a specialized light-activated sodium conductance but also modulates voltage-dependent conductances. Previous work has demonstrated that the delayed rectifier current is reduced by light; we report here that the early voltage-dependent inward current is also reduced by light. Furthermore, by maintained during continuous depolarization and that this maintained inward current can be reduced by light. EGTA injection was found to increase the maintained inward current.  相似文献   

6.
Summary In the electrical response of retinula cells to polarized light in the flesh-flyBoettcherisca peregrina, the polarization plane which showed the maximum sensitivity (Polmax phase) to illumination by a small spot of light just large enough to cover only one retinula cell was found to differ from that with illumination by a larger spot of light which included adjacent cells. There was a difference of about 30°.This difference in Polmax phase was assumed to indicate the occurrence of interaction between retinula cells even in the fly photoreceptor having rhabdom of the open type. This assumption was confirmed by the following experiments. (1) Under selective adaptation by a large spot of polarized light so as to eliminate the interaction effect, the Polmax phase was found to be the same as that measured by a small spot even though the measurement had been made using a large spot of light. (2) The responses to polarized light illuminated from along some restricted off-axes showed a 60° shift in the Polmax phase in comparison to those obtained from along the other axes. (3) The spectral sensitivity curves to illumination from along off-axes were almost all the same and were for the peripheral retinula cells. (4) The receptor potentials were found to increase in amplitude in a certain limited off-axis area that corresponded to the specific off-axis direction of illumination which had resulted in a shift of the Polmax phase.It is concluded from these results that the peripheral retinula cells in the flesh-fly demonstrate interaction between certain two adjacent retinula cells. This interaction is positive but not a simple algebraic sum of the activity of two cells.This work was partly supported by a grant from the Japan Education MinistryI wish to thank the Department of Biology, Faculty of Sciences, Kyushu University (Prof. H. Morita and Prof. H. Tateda) for the constant supply of flesh-flies.  相似文献   

7.
Summary The eye of the honey bee drone is composed of approximately 8,000 photoreceptive units or ommatidia, each topped by a crystalline cone and a corneal facet. An ommatidium contains 9 visual or retinula cells whose processes or axons pierce a basement membrane and enter the optic lobe underlying the sensory retina. The visual cells of the ommatidium are of unequal size: six are large and three, small. In the center of the ommatidium, the visual cells bear a brush of microvilli called rhabdomere. The rhabdome is a closed-type one and formed mainly by the rhabdomeres of the six large retinula cells. The rhabdomeric microvilli probably contain the photopigment (rhodopsin), whose modification by light lead to the receptor potential in the retinula cells. The cytoplasm of the retinula cells contains various organelles including pigment granules (ommochromes), and peculiar structures called the subrhabdomeric cisternae. The cisternae, probably composed of agranular endoplasmic reticulum undergo swelling during dark adaptation and appear in frequent connection with Golgi cisternae. Three types of pigment cells are associated with each ommatidium. The crystalline cone is entirely surrounded by two corneal pigment cells. The ommatidium, including its dioptric apparatus and corneal pigment cells, is surrounded by a sleeve of about 30 elongated cells called the outer pigment cells. These extend from the base of the corneal facet to the basement membrane. Near the basement membrane the center of the ommatidium is occupied by a basal pigment cell. Open extracellular channels are present between pigment cells as well as between retinula cells. Tight junctions within the ommatidium are restricted to the contact points between the rhabdomeric microvilli. These results are discussed in view of their functional implications in the drone vision, as well as in view of the data of comparative morphology.This work was supported by a grant from the Fonds National Suisse de la Recherche Scientifique.  相似文献   

8.
The time-course of light-induced changes in membrane voltage and resistance were measured in single photoreceptors in eyecup preparations of Gekko gekko. A small circular stimulus directed toward the impaled receptor produced membrane hyperpolarization. Application of a steady annular light to the receptor periphery resulted in diminution of the receptor's response to the stimulus. The effects of illumination of the surrounding receptors were isolated by directing a small, steady desensitizing light to the impaled receptor and then applying a peripheral stimulus. Brief stimuli produced a transient decrease in resistance with rapid onset and offset, a time-course similar to that of the response diminution. For some cells a depolarization that coincided with the resistance decrease was seen. During illumination with prolonged stimuli the resistance decrease was followed by a slow increase. After offset resistance rose transiently above the original value and then returned slowly to its original value. The slow resistance changes were not accompanied by changes in membrane voltage. The response diminution, resistance decrease, and depolarization were not observed in retinas treated with aspartate or hypoxia. It is therefore concluded that these effects are mediated by horizontal cells. The diminution is achieved by shunting the receptor potential and may play a role in field adaptation.  相似文献   

9.
Potential changes during 5 min periods of light and dark adaptation were recorded in the compound eyes and optic lobes of six insects. In Locusta, Schistocerca, Phormia, and Calliphora there was a rapid negative deflexion at on and a positive deflexion at off in the retinula cell region. During steady illumination the potential diminished and reached a steady level in 5 min. In Locusta the rapid deflexions were abolished when the negative peak potential in the first synaptic region was abolished by trauma or anoxia; and under these conditions only a slow potential change remained. Fast deflexions were not found in the retinula cell region in Aeshna and Periplaneta but only slow potential changes. By studying the effect of light intensity, wavelength, and time of exposure on the locust eye it was found that (a) the amplitude of the rapid on-deflexion was proportional to the logarithm of the incremental intensity, and (b) that the response was maximal in the blue-green part of the spectrum (500 mμ). Rapid deflexions reversed in sign when the electrode was deeper than the first synaptic region, whereas the slow phase of the response did not reverse but became attenuated at greater depths. The potential changes have two stable states; one in darkness and the other in light, each reached after a pronounced but transient overshoot. It is suggested that the fast and slow components of the response have separate origins, the former is dependent on the functional integrity of the first synaptic region whereas the latter may be due to a slow change in the visual pigments. The relationship of the above potential changes to the spike potential discharges in the optic lobe is discussed.  相似文献   

10.
Single pressure injections of 1-2 mM calcium aspartate into the light-sensitive region of Limulus ventral photoreceptors resulted in a rapid, 20-40-mV depolarization lasting approximately 2 s. The depolarization closely followed the rise in intracellular free calcium caused by the injection, as indicated by aequorin luminescence. The depolarization was followed by reversible desensitization (adaptation) of responses to both light and inositol 1,4,5 trisphosphate. Similar single injections of calcium into the light-insensitive region of the receptor were essentially without effect, even though aequorin luminescence indicated a large, rapid rise in intracellular free calcium. The depolarization caused by injection of calcium arose from the activation of an inward current with rectification characteristics and a reversal potential between +10 and +20 mV that were similar to those of the light-activated conductance, which suggests that the same channels were activated by light and by calcium. The reversal potentials of the light- and calcium-activated currents shifted similarly when three-fourths of the extracellular sodium was replaced by sucrose, but were not affected by a similar replacement of sodium by lithium. The current activated by calcium was abolished by prior injection of a calcium buffer solution containing EGTA. The responses of the same cells to brief light flashes were slowed and diminished in amplitude, but were not abolished after the injection of calcium buffer. Light adaptation and prior injection of calcium diminished the calcium-activated current much less than they diminished the light-activated current.  相似文献   

11.
Abstract— Protein synthesis in the retina of the honey-bee drone was studied by incubating head slices in labelled leucine and measuring the TCA insoluble radioactivity. It was found that the protein-bound radioactivity in illuminated retinas was half of that in dark-adapted ones. This ratio was not affected by pre-treatment with puromycin. It was therefore concluded that, in the drone, the main influence of illumination is to increase the rate of breakdown of proteins.
Relatively high concentrations of labelled protein were found in dark-adapted retinas when the retinula cells were hyperpolarized by bathing the preparation in a sodiumfree medium; low concentrations were found when retinula cells were depolarized by increasing the extracellular potassium concentration. These findings suggest that protein metabolism of the retina is influenced by the membrane potential of retinula cells.  相似文献   

12.
In situ cGMP phosphodiesterase and photoreceptor potential in gecko retina   总被引:3,自引:1,他引:2  
The possible involvement of phosphodiesterase (PDE) activation in phototransduction was investigated in gecko photoreceptors by comparing the in situ PDE activity with the photoreceptor potential. In the dark, intracellular injection of cGMP into a gecko photoreceptor caused a long-lasting depolarization. An intense light flash given during the depolarization phase repolarized the cell with a short latency comparable to that of the light-evoked hyperpolarizing response, which indicates that the activation of PDE in situ is rapid enough to generate the photoreceptor potential. PDE activity in situ was estimated quantitatively from the duration of the cGMP-induced depolarization, since it was expected that the higher the PDE activity, the shorter the duration. Under steady illumination, the enzyme exhibited a constant activity. On exposure to a light flash, PDE became activated, but recovered in the dark with a time course that was dependent on the intensity of the preceding stimulus. When PDE activity and photoreceptor sensitivity to light were measured in the same cell after a light flash, both recovery processes showed similar kinetics. Theoretical analysis showed that the parallelism in the recovery time courses could be explained if cGMP is the transduction messenger. These results suggest that PDE activation is involved not only in the generation but also in the adaptation mechanisms of the photoreceptor potential.  相似文献   

13.
Electrical responses were recorded intracellularly from the compound eyes of a fly (Lucilia) and of several dragonflies (Copera, Agriocnemis, and Lestes). An ommatidium of the dragonflies is made up of four retinula cells and a rhabdom composed of three rhabdomeres while the Lucilia has an ommatidium of seven independent retinula cells and rhabdomeres. The intracellular responses presumably recorded from the retinula cell had the same wave form in the two groups of insects: The responses were composed of two components or phases, a transient spike-like potential and a slow one maintained during illumination. The membrane potential, in the range of -25 to -70 mv., was influenced by the level of adaptation, and it was transiently depolarized to zero by high levels of illumination.  相似文献   

14.
Summary Deeply dark adapted (1 h) photoreceptor cells of the honey bee drone show a light-induced enhancement of sensitivity (facilitation) as an aftereffect of illumination or in the presence of dim backgrounds.The Ca2+-dependency of this effect was studied: Reduction of extracellular Ca2+ to 0.1 mM decreases the sensitivity of a dark adapted cell, and the light-induced increase in sensitivity due to repetitive, dim, 20 ms test flashes is slower than in normal saline. After a sensitizing conditioning light, the sensitivity drops faster in low-calcium saline. The light-induced enhancement of sensitivity is mimicked by pressure injections of low amounts of Ca2+ (Ca2+/EGTA-buffers; 0.15 M free Ca2+) into a dark adapted cell. Injection of EGTA alone decreases the sensitivity. Injection of a solution containing ca1 mM free Ca2+ sequentially decreases and later increases the sensitivity transiently.These results suggest a model in which a progressive increase in intracellular Ca2+ concentration by light first increases (facilitates), and, at higher concentrations, decreases (light adapts) the sensitivity of the cells. One possible site of action for this positive and negative feedback control of cell sensitivity by Ca2+ is the endoplasmic reticulum.  相似文献   

15.
In the transient receptor potential (trp) mutant of Drosophila, the receptor potential appears almost normal in response to a flash but quickly decays to baseline during prolonged illumination. Photometric and early receptor potential measurements of the pigment suggest that the pigment is normal and that the decay of the trp response during illumination does not arise from a reduction in the available photopigment molecules. However, there is reduction in pigment concentration with age. Light adaptation cannot account for the decay of the trp response during illumination: in normal Drosophila a dim background light shortens the latency and rise time of the response and also shifts the intensity response function (V-log I curve) to higher levels of light intensity with relatively little reduction in the maximal amplitude (Vmax) of response. In the trp mutant, a dim background light or short, strong adapting light paradoxically lengthens the latency and rise time of the response and substantially reduces Vmax without a pronounced shift of the V-log I curve along the I axis. The effect of adapting light on the latency and V-log I curve seen in trp are associated with a reduction in effective stimulus intensity (reduction in excitation efficiency) rather than with light adaptation. Removing extracellular Ca+2 reduces light adaptation in normal Drosophila, as evidenced by the appearance of "square" responses to strong illumination. In the trp mutant, removing extracellular Ca+2 does not prevent the decay of the response during illumination.  相似文献   

16.
We have studied the on-transient of the receptor potential of the barnacle photoreceptor. Its amplitude has previously been shown to depend on light intensity and state of light-dark adaptation. We have examined its dependence on 1) the presence of a prolonged depolarizing afterpotential (PDA), 2) a background light, 3) added alcohol, or 4) decreased K+ concentration in the bath. We find that the relative on-transient amplitude tends to increase initially with increasing depolarization arising from 1)–4) and then to decrease again at higher depolarization. This behavior is qualitatively explainable by the cell's currentvoltage characteristics and by the adapting effect of the stimulus on the conductances arising from the PDA, the background light and the alcohol.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

17.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

18.
Foraging experience is correlated with structural plasticity of the mushroom bodies of the honey bee brain. While several neurotransmitter and intracellular signaling pathways have been previously implicated as mediators of these structural changes, none interact directly with the cytoskeleton, the ultimate effector of changes in neuronal morphology. The Rho family of GTPases are small, monomeric G proteins that, when activated, initiate a signaling cascade that reorganizes the neuronal cytoskeleton. In this study, we measured activity of two members of the Rho family of GTPases, Rac and RhoA, in the mushroom bodies of bees with different durations of foraging experience. A transient increase in Rac activity coupled with a transient decrease in RhoA activity was found in honey bees with 4 days foraging experience compared with same-aged new foragers. These observations are in accord with previous reports based on studies of other species of a growth supporting role for Rac and a growth opposing role for RhoA. This is the first report of Rho GTPase activation in the honey bee brain.  相似文献   

19.
We recorded the total pulse response of the optic nerve in frogs to varying degrees of increase and decrease of light from the original adapting level. On the basis of these data, we plotted curves of dependence of the magnitude of response on the logarithm of relative value of increase and decrease of light (the amplitude characteristic — AC). The AC is steepest in the zone of adapting background and sloped on either side of it. It follows that under stationary conditions of illumination, the eye is capable of finely differentiating light intensity only within a narrow range (one logarithmic unit). After adaptation to a new level of illumination, the AC shifts along the scale of light intensity in such a way that the steepest portion corresponds to the adapting brightness. Increase in steepness of the AC occurs precisely during the process of adaptation. The contrast sensitivity of the human visual system is greatest near the adapting level and declines on either side of it. It follows that in man steepness of the visual system AC is greatest in the zone of the adapting background. Both increase and decrease of intensity of the adapting background are accompanied by a decline of contrast sensitivity, which rises again during the process of adaptation to a new level. Thanks to adaptive shift of the steep portion of the AC along the scale of light intensity, a visual system having a high contrast sensitivity only within a narrow "working" range is capable of finely differentiating light intensity in significantly changing conditions of illumination.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 81–89, July–August, 1969.  相似文献   

20.
The possible role of Ca ions in mediating the drop in sensitivity associated with light adaptation in Limulus ventral photoreceptors was assessed by simultaneously measuring the sensitivity to light and the intracellular free Ca concentration (Cai); the latter was measured by using Ca-selective microelectrodes. In dark-adapted photoreceptors, the mean resting Cai was 3.5 +/- 2.5 microM SD (n = 31). No correlation was found between resting Cai and absolute sensitivity from cell to cell. Typically, photoreceptors are not uniformly sensitive to light; the Cai rise evoked by uniform illumination was 20-40 times larger and faster in the most sensitive region of the cell (the rhabdomeral lobe) than it was away from it. In response to a brief flash, the Cai rise was barely detectable when 10(2) photons were absorbed, and it was saturated when approximately 10(5) photons were absorbed. During maintained illumination, starting near the threshold of light adaptation, steady Cai increases were associated with steady desensitizations over several log units of light intensity: a 100-fold desensitization was associated with a 2.5-fold increase in Cai. After a bright flash, sensitivity and Cai recovered with different time courses: the cell was still desensitized by approximately 0.5 log units when Cai had already recovered to the prestimulus level, which suggests that under those conditions Cai is not the rate-limiting step of dark adaptation. Ionophoretic injection of EGTA markedly decreased the light-induced Cai rise and increased the time to peak of the light response, but did not alter the resting Cai, which suggests that the time to peak is affected by a change in the capacity to bind Ca2+ and not by resting Cai. Lowering the extracellular Ca2+ concentration (Cao) first decreased Cai and increased sensitivity. Longer exposure to low Cao resulted in a further decrease of Cai but decreased rather than increased sensitivity, which suggests that under certain conditions it is possible to uncouple Cai and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号