首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated posterior gills (no. 7) of shore crabsCarcinus maenas acclimated to brackish water of a salinity of 10 S were bathed and perfused with 50% sea water (200 mmol·l-1 Na+), and the internal perfusate collected during subsequent periods of 5 min. During a single passage through the gill the pH of the perfusion medium decreased from ca. 8.1 to ca. 7.7, a result implying that the gill possesses structures which recognize unphysiologically high pH values in the haemolymph and regulates them down to physiological values of ca. 7.7. The calculated apparent proton fluxes from the epithelial cells into the haemolymph space amounted to 17.9 mol·g fw-1·h-1, a value of only 3.8% of net Na+ fluxes observed under comparable conditions. When 0.1 mmol·l-1 KCN, an inhibitor of mitochondrial cytochrome oxidase, or 5 mmol·l-1 ouabain, a specific inhibitor of Na+/K+-ATPase were applied in the internal perfusate, down-regulation of pH was no longer observed and the gill was completely depolarized, i.e. transepithelial potential differences dropped from-7.8 to 0 mV (haemolymph space negative to bath). Regulation of pH was completely inhibited by antagonists of carbonic anhydrase (0.1 mmol·l-1 acetazolamide or 0.01 mmol·l-1 ethoxyzolamide) applied in the perfusate. Inhibitors of Na+/H+ exchange, 0.1 mmol·l-1 amiloride applied in the external bathing medium or in the internal perfusate, and symmetrical 0.01 mmol·l-1 5-(N-ethyl-N-isopropyl)amiloride, as well as inhibitors of Cl-/HCO3 - exchange and Na+/HCO3 - cotransport, 0.5 mmol·l-1 4,4-diisothiocyanatostilbene-2,2-disulphonate or 0.3 mmol·l-1 4-acetamido-4-isothiocyanatostilbene 2,2-disulphonate applied on both sides of the gill, and inhibitors of H+-ATPase, 0.05 mmol·l-1 N-ethylmaleimide and 0.1 mmol·l-1 N,N-dicyclohexylcarbodiimide —applied on both sides of the gill — did not alter the acidification of the perfusate observed in controls. Using artificial salines buffered to pH 8.1 with 0.75 mmol·l-1 tris (hydroxymethyl) aminomethane instead of 2 mmol·l-1 HCO3 -, apparent proton fluxes were reduced to 11% of controls, a result suggesting that pH regulation by crab gills needs the presence of HCO3 -. The findings obtained suggest that pH regulation by crab gills depends on the oxidative metabolism of the intact branchial epithelium and that carbonic anhydrase plays a central role in this process. Na+/H+ exchange, anion exchange or cotransport and active proton secretion seem not to be involved. While unimpaired active ion uptake is a prerequisite for pH regulation, ion transport itself is independent of it.Abbreviations acetazolamide (N-[sulphamoyl-1, 3, 4-thiadiazol-2-yl]-acetamide) - amiloride 3,5-diamino-6-chloropyrazinoyl-guanidine - CA carbonic anhydrase - DBI dextrane-bound inhibitor thiadiazolesulphonamide - DCCD N N dicyclohexylcarbodiimide - DIDS 4,4-diisothiocyanato-stilbene-2,2-disulphonate - EIPA 5-(N-ethyl-N-isopropyl) amiloride - ethoxyzolamide 6-ethoxy-2-benzothiazole-sulphonamide - fw fresh weight - J H + apparent proton flux - NEM N-ethylmaleimide - PD transepithelial potential difference - PEG-STZ polyethylene-glycol-thiadiazolesulphonamide - STTS 4-acetamido-4-isothiocyanatostibene 2,2-disulphonate - SW sea water - TRIS tris(hydroxymethyl)aminomethane  相似文献   

2.
Effects of changes in environmental Ca2+ on the secretion of prolactin, a possible hypercalcemic hormone, were examined both in vivo and in vitro in the Japanese ecl, Anguilla japonica. Transfer of seawater- or freshwater-adapted fish to fresh water, fresh water containing 10 mmol Ca2+ · 1-1 sea water, Ca2+-free sea water, or deionized water was accompanied by significant changes in plasma Ca2+ levels after 7 days, except for the fish transferred from fresh water to fresh water and from sea water to sea water. Changes in external Ca2+ concentrations did not affect plasma prolactin levels, although plasma prolactin levels as well as pituitary prolactin contents were significantly greater in fish in a hypotonic environment than those in a hypertonic environment, regardless of the external Ca2+ concentration. Hypercalcemia, induced by removal of the corpuscles of Stannius, did not alter plasma prolactin levles. Incubation of the pituitary in the medium with different Ca2+ concentrations (up to 2.9 mmol·l-1) did not affect the basal release of prolactin, except at an extremely low Ca2+ concentration (less than 0.1 mmol·l-1) where prolactin release was inhibited. Addition of Ca2+ ionophore (A23187) to the medium led to a marked and significant increase in prolactin release, indicating that an increase in intracellular Ca2+ stimulates prolactin release. However, the effect was not specific to prolactin cells; a similar increase was seen in growth hormone release. These results indicate that changes in environmental Ca2+ concentration may not be the primary factor influencing prolactin secretion in the eel; changes in environmental osmolality or Na+ levels seem to be more critical for the regulation of prolactin secretion.Abbreviations CSX stanniectomy - DMSO dimethylsulphoxide - DW deionized water - FW fresh water - GH growth hormone - PRL prolactin - SW sea water  相似文献   

3.
About 92% of the taurine influx in flounder erythrocytes at physiological conditions in vitro (330 mosmol·l-1, 145 mmol·l-1 Na+, 0.30 mmol·l-1 taurine) is Na+-dependent. This influx is highly specific for taurine. The -amino compounds hypotaurine and -alanine were the only compounds which mimicked the inhibitory effect of taurine on influx of [14C]taurine, the former more than the latter. Counterexchange of taurine was also mediated by the taurine transporters. Reduction of osmolality per se did not affect the activity of these transporters. Non-linear regression analysis of the influx values revealed the presence of two different influx systems: a system with high affinity and low capacity and another with low affinity and high capacity. However, we cannot exclude the possibility that this influx of taurine was mediated by only one transporter which operated in different modes depending on the extracellular Na+ concentration. On the assumption that the Na+-dependent influx was mediated by two separate systems, the maximal velocity of the low capacity system was 2.55 nmol·g dry weight-1·min-1 at 145 mmol·ll-1 extracellular Na+. This capacity was about 50% lower than that of the high capacity system. The Michaelis constants were 0.013 and 1.34 mmol·l-1, respectively. Reduction of the extracellular Na+ concentration reduced maximal velocity and the affinity to taurine of both transport systems. At 10 mmol·l-1 Na+ or lower concentrations the high capacity system did not seem to operate. The activation method suggested that each taurine molecule transported by the high capacity system was accompanied by two Na+. The stoichiometry of the low capacity system was 1 taurine: 1 Na+. The Hill-coefficient for both transport systems was 1.00.Abbreviations cpm counts per minute - dw dry weight - GABA -amino-n-butyric acid - K m Michaelis constant - pK b basic dissociation constant - SD standard deviation - -ABA Dl--amino-n-butyric acid - V max maximal velocity - ww wet weight  相似文献   

4.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

5.
Summary The lachrymal salt glands of hatchlings of the green sea turtle (Chelonia mydas) secrete a hyperosmotic (up to 2000 mosmol·kg–1) NaCl solution. X-ray microanalysis of frozen-hydrated glands showed that during secretion intracellular Na+ concentration in the principal cells increased from 13 to 34 mmol·l–1 of cell water, whilst Cl and K+ concentrations remained unchanged at 81 mmol·l–1 and 160–174 mmol·l–1, respectively. The high Cl concentration and the change in Na+ concentration are consistent with the prevailing paradigm for secretion by the structurally and functionally similar elasmobranch rectal gland. Concentrations of Na+, Cl and K+ in the lumina of secretory tubules of secreting (Na+ 122, Cl 167, K+ 38 mmol·l–1) and non-secreting (Na+ 114, Cl–1 174, K+ 44 mmol·l–1) glands were similar and the fluid was calculated to be approximately isosmotic with blood. In the central canals Na+ and Cl concentrations were similar but K+ concentration was lower (11–15 mmol·l–1). It is concluded that either a high transepithelial NaCl gradient in secretory tubules and central canals is very rapidly dissipated during the short time between gland excision and freezing, or that ductal modification of an initial isosmotic secretion occurs.  相似文献   

6.
The renal response to infusion of three different saline solutions was studied in chicks of Leach's storm petrel (Oceanodroma leucorhoa). Each of the solutions (125 mmol·1-1 NaCl at 5.3 ml·h-1, 250 mmol·l-1 NaCl at 2.6 ml·h-1, and 550 mmol·l-1 NaCl at 1.2 ml·h-1) provided the same delivery of Nacl but in different volumes of water. Birds infused with 125 mmol·l-1 NaCl had a glomerular filtration rate of 25.7 ml·h-1, a urine flow rate of 4.4 ml·h-1, and excreted 71% of the infused Na+ load in the urine. With infusion of 250 mmol·l-1 NaCl, the glomerular filtration rate was unchanged (23.3 ml·h-1), but urine flow rate was reduced to 0.93 ml·h-1 and only 35% of the Na+ load was excreted in the urine. Infusion of 550 mmol·l-1 NaCl induced a sharp decrease in glomerular filtration rate (to 3.8 ml·h-1) and urine flow rate (to 0.08 ml·h-1), and only 1.4% of the infused Na+ was excreted in the urine. The contribution of different nephron populations to filtration was assessed by the pattern of staining of glomeruli by alcian blue infused during the last 30 min of the saline infusion. The numbers of stained glomeruli did not differ between birds infused with 125 and 250 mmol·l-1 NaCl (59000 and 55000 glomeruli per kidney, respectively), and the patterns of staining were similar for birds in these two groups. Birds infused with 550 mmol·l-1 NaCl had lighter staining overall and fewer stained glomeruli (37000 per kidney). This absence of staining was predominant in the smaller size classes of glomeruli, suggesting a selective shutdown of smaller (reptilian-type) nephrons during times of osmotic challenge in these birds. This may be part of an overall suite of water-conserving strategies employed by these chicks during their long confinement with irregular feeding in the nesting burrow.Abbreviations ADH antidiuretic hormone - GFR glomerular filtration rate - MT mammalian-type - P plasma inulin concentration - RT reptilian-type - U urine inulin concentration - V urine flow rate  相似文献   

7.
Possible mechanisms of primary fluid formation by macropodine parotid glands were investigated in anaesthetized red kangaroos using ion transport inhibitors. Carotid plasma amiloride concentrations of 0.05–0.5 mmol·l-1 progressively reduced a stable acetylcholine-evoked half-maximal flow rate of 2.0±0.04 to 0.22±0.024 ml·min-1 (mean±SEM). Concurrently, saliva bicarbonate concentration and secretion fell (135±1.6 to 67±1.7 mmol·l-1 and 272±7.6 to 15±2.6 mol·min-1, respectively); [phosphate], [chloride] and [sodium] rose and [potassium] and osmolality were unaltered. High-rate cholinergic stimulation did not increase saliva flow beyond 11±1.0% of that for equivalent pre-amiloride stimulation. Equipotent levels of amiloride and methazolamide given concurrently were no more effective at blocking flow and bicarbonate secretion than when given separately. Furosemide (up to 2 mmol·l-1), bumetanide (up to 0.2 mmol·l-1) and ethacrynate (1 mmol·l-1) in carotid plasma had no effect on salivary flow or ion concentrations. During methazolamide blockade, furosemide did not curtail the concurrent increase in salivary [chloride]. Chlorothiazide at 0.25–1.0 mmol·l-1 caused progressive depression of saliva flow and [bicarbonate], and elevation of [chloride]. 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid at 0.1 mmol·l-1 was without effect, whereas at 0.5 mmol·l-1 it stimulated fluid secretion and increased saliva [protein], [sodium], [potassium], [bicarbonate] and osmolality. Concurrently, mean arterial blood pressure and pulse pressure fell and heart rate, haematocrit and carotid artery plasma flow rose. These responses were absent if saliva flow was kept constant by reduction in cholinergic stimulation during 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid administration. It is concluded that secretion of primary fluid by the kangaroo parotid is initiated mainly (>90%) by secretion of bicarbonate which is formed in the endpiece cells from CO2 delivered by the circulation. No evidence was found for initiation of fluid secretion by chloride transport involving basolateral Na+-K+-2Cl- symports, Na+-Cl- symports or Cl-/HCO 3 - antiports.Abbreviations CA carbonic anhydrase - CAI carbonic anhydrase inhibitors - MAP mean arterial blood pressure - PAH p-aminohippurate - SITS 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid  相似文献   

8.
Saliva was collected from the mandibular glands of anaesthetized common wombats (Vombatus ursinus) to ascertain maximal flow rates, salivary compostion and possible adaptations, particularly PO4 3- secretion, to assist digestion. After temporary catheterization of the main duct through its oral opening, salivary secretion was evoked at flow rates ranging from 0.02±0.002 (±SEM) ml·min-1 (0.7±0.07 l·min-1·kg body weight-1) to 0.4±0.05 ml·min-1(14±1.9 l·min-1·kg body weight-1) by ipsilateral intracarotid infusion of acetylcholine. The [Na+] (15±5.1 to 58±8.6 mmol·l-1) and [HCO3 -] (35±1.9 to 60±1.9 mmol·l-1) were positively correlated with salivary flow rate. The [K+] (58±5.2 to 30±2.4 mmol·l-1), [Ca2+] (10.4±1.67 to 4.1±0.44 mmol·l-1), [Mg2+] (0.94±0.137 to 0.17±0.032 mmol·l-1), [Cl-] (71±9.2 to 45±6.0 mmol·l-1), [urea] (9.3±0.79 to 5.1±0.54 mmol·l-1), H+ activity (29±1.6 to 17±1.6 nEq·l-1) and amylase activity (251±57.4 to 92±23.3 kat·l-1) were negatively correlated with flow. Both concentration and osmolality fell with increasing flow at the lower end of the flow range but osmolality always increased again by maximal flow whereas the relation between protein and flow was not consistent at the higher levels of flow and stimulation. Salivary [PO4 3+] was not correlated with flow and at 3–14% of the plasma concentration was extremely low. Thus, in contrast to its nearest relative, the koala (Phascolarctos cinereus), the wombat secretes little PO4 3+ presumably because it does not need high levels of PO4 3+ in its saliva to facilitate microbial digestion of plant fibre.Abbreviations bw body weight - ww wet weight  相似文献   

9.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   

10.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

11.
When intact crayfish are in an ion-poor medium (KCl, 0.1 mmol·l-1+KHCO3, 0.1 mmol·l-1) there is a large potential difference (transepithelial potential difference),-20 to-40 mV (hemolymph negative), across the gills. Addition of Ca2+ to the medium is followed by a rapid change in transepithelial potential difference to near 0 mV. The transepithelial potential difference showed a non-linear dependence on [Ca2+]out with a limiting value of+2 to+10 mV at>1 mmol·l-1. The concentration generating a half-maximum transepithelial potential difference change (15–20 mV) was 0.1 to 0.2 mmol·l-1. Three other alkaline earth ions were also electrogenic; Ba2+ caused slightly larger transepithelial potential difference changes, Sr2+ and Mg2+ were a little less effective. It has been suggested that the transepithelial potential difference in ion-poor medium (in fish) is due to the diffusive efflux of NaCl across the gills, with a Cl-/Na+ permeability ratio of <1. Evidence is presented that this might be the case in crayfish. The electrogenic effect of Ca2+ might then be due to its effect on gill permeability to Na+ and Cl- such that the permeability ratio increased and approached unity as the transepithelial potential difference approached 0. However, this was shown to be unlikely. An alternative explanation for Ca2+ dependence of the transepithelial potential difference is that active inward Ca2+ transport is electrogenic.Abbreviations FW fresh water - I out ion efflux - IP ion-poor solution - P c Cl-permeability - P Na Na+ permeability - R electrical resistance - SW sea water - TEP transepithelial potential difference  相似文献   

12.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

13.
Using two mouse-mouse hybridoma cell lines, the response to ammonia step and serial changes was investigated in batch and continuous cultures with serum-free medium. The inhibitory effect of ammonia on cell growth depended on the cultivation mode, and differed markedly between cell lines. The cell line, 4C10B6 producing IgG monoclonal antibody against Pseudomonas, showed a high adaptation ability to ammonia. The 4C10B6 cells could grow under ammonia concentration as high as 21 mmol/l NH4Cl with a viability of 80% in the continuous culture with serial increase in ammonia concentration. Whereas, in the batch culture with ammonia step change the cell growth completely ceased at 12 mmol/l NH4Cl. The other cell line, TO-405 producing IgG monoclonal antibody against hepatitis B surface antigen, could not adapt to ammonia, and the cell growth did not occur at 9 mmol/l NH4Cl even under the ammonia serial change.List of symbols DFeed d-1 Dilution rate of fresh feed medium (=Fo/V) - DOut d-1 Dilution rate of cell suspension (=F1/V) - F1 ml·d-1 Volumetric discharge rate of cell suspension - F0 ml·d-1 Volumetric flow rate of fresh feed medium - kD h-1 Specific death rate - P mmol·l-1 Product concentration - S mmol·l-1 Substrate concentration in culture broth - S0 mmol·l-1 Substrate concentration in feed medium - t d Cultivation time - V ml Working volume of reactor - X0 cells·ml-1 Total cell density - XV cells·ml-1 Viable cell density - YP/S mmol·mmol-1 Yield of product from substrate - YX/S cells·mmol-1 Yield of cells from substrate - mmol·cell-1·h-1 Specific production rate - h-1 Specific growth rate - mmol·cell-1·h-1 Specific consumption rate of substrate  相似文献   

14.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

15.
Summary The intestinal caeca reabsorb urinary sodium chloride (NaCl) and water (Rice and Skadhauge 1982). Free water may be generated if the reabsorbed NaCl is secreted via salt gland secretion (Schmidt-Nielsen et al. 1958). Therefore ceacal ligation should (a) reduce hingut NaCl and water reabsorption, (b) enhance the increase in plasma osmolality during saline acclimation, and (c) affect drakes more than ducks. Twelve Pekin drakes and 13 Pekin ducks, Anas platyrhynchos, were caecally ligated or sham operated before acclimation to 450 mmol · 1 NaCl. Body mass, hematocrit, plasma osmolality, and inonic concentrations of plasma, cloacal fluid, and salt gland secretion were measured after each increase in drinking water salinity. Osmoregulatory organ masses were determined. Caecal ligation did not effect plasma osmolality or ion concentrations of plasma, cloacal fluid, or salt gland secretion, but reduced salt gland size in ducks. Drakes and ducks drinking fresh water had the same hematocrit, plasma osmolality, and plasma concentrations of Na+ and Cl. In both sexes exposure to 75 mmol · 1-1 NaCl significantly decreased plasma [Na+] and doubled cloacal fluid [Na+]. Exposure to 450 mmol · 1-1 NaCl decreased body mass and increased hematocrit, plasma [Na+], [Cl], and plasma osmolality (more in drakes than in ducks); cloacal fluid osmolality nearly doubled compared to freshwater-adapted ducks, due mainly to osmolytes other than Na+ and Cl. The [Cl] in salt gland secretion only slightly exceeded drinking water [Cl].Abbreviations AVT antiduretic hormone - CF cloacal fluid - ECFV extraoellular fluid volume - FW freshwater acclimated - Hct hematocrit - MDWE mean daily water flux - [Na +]cf cloacal fluid sodium concentration - [Na +]pl plasma sodium concentration - Osm cf cloacal fluid osmolality - Osm pl plasma osmolality - SGS salt gland secretion - TBW total body water  相似文献   

16.
Roots of nitrate-starved and nitrate-pretreated seedlings of Hordeum vulgare were used to investigate the induction of a high-capacity uptake mechanism for nitrate. When exposed to 0.2 mmol·l-1KNO3, nitrate-starved roots took up nitrate at a rate of approx. 1 mol·(g FW)-1·h-1; K+ was absorbed at a rate ten-times higher. Nitrate uptake accelerated after a lag of about 1 h, until it matched the rate of K+ uptake about 4 h later. p-Fluorophenylalanine (FPA), which prevents the synthesis of functioning proteins, suppressed the development of the high-capacity mechanism. Pretreatment of the roots with 0.2 mmol·l-1 Ca(NO3)2 for 24 h established the high-capacity mechanism. Pretreated roots were able to absorb nitrate at high rates immediately upon exposure to 0.2 mmol·l-1KNO3, in the absence or presence of FPA. The high-capacity mechanism, once established, appeared to have a protein turnover as slow as that of the low-capacity mechanism or that of the mechanism involved in the uptake of K+. In contrast, the mechanisms for the transport of nitrate and K+ into the xylem vessels were completely blocked by FPA within 1 h of application, confirming earlier evidence for a rapid turnover of the transport proteins in the xylem parenchyma.Nitrate reduction proceeded at rates which were roughly one-tenth as large as the rates of the respective nitrate-uptake processes, indicating that nitrate-reductase activity was determined by the rate of nitrate uptake and not vice versa.We conclude that the formation of a high-capacity nitrate-uptake mechanism in barley roots occurs in response to nitrate uptake through a constitutive mechanism of low capacity which appears to function as a sensing mechanism for nitrate in the environment of the roots.Abbreviation FPA p-fluorophenylalanine  相似文献   

17.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

18.
To evaluate the role of the gill chloride cells in regulating metabolic alkalosis in rainbow trout (Oncorhynchus mykiss), the surface area of branchial chloride cells was altered experimentally using combined cortisol/ovine growth hormone injections. Long-term (10-day) treatment of fish with cortisol/ovine growth hormone caused an increase in the two-dimensional chloride cell fractional surface area when compared to uninjected fish (from 8.4 to 29.7%). This was the combined result of an increase in the size of individual cells (from 34.6 to 59.2 m2) and increased numbers of cells (from 2368 to 5006 cells · mm-2). Metabolic alkalosis was induced by intra-arterial infusion of 140 mmol · l-1 NaHCO3; control fish were infused with 140 mmol · l-1 NaCl. Blood pH and plasma [HCO3 -] increased in both the untreated and the cortisol/ovine growth hormone-treated fish. However, the increases in pH (from 8.05 to 8.53) and [HCO3 -] (from 5.9 to 22.2 mmol · l-1) in the untreated fish were significantly greater than in the cortisol/ovine growth hormone-treated fish (pH increased from 7.78 to 8.11; [HCO3 -] increased from 5.5 to 13.9 mmol · l-1). In all fish, NaHCO3 infusion elicited an increase in the rate of branchial basic equivalent excretion (acidic equivalent uptake) which, in turn, was caused by decreases and increases in branchial Na+ uptake and Cl- uptake, respectively. In the untreated fish, there was a pronounced increase (75%) in chloride cell surface area during NaHCO3 infusion. The attenuation of the metabolic alkalosis during HCO3 - infusion in the cortical/ovine growth hormone-treated fish was caused, at least in part, by an enhancement of branchial basic equivalent excretion. In these fish that already displayed a proliferation of chloride cells, there was no further increase in chloride cell surface area. The changes in Na+ influx and Cl- influx were quantitatively similar during NaHCO3 infusion in both groups. This suggests that the greater rate of base excretion in the cortisol/ovine growth hormone-treated fish was caused by a greater percentage of Cl- uptake being coupled to HCO3 - excretion and less to Cl- excretion (Cl- exchange diffusion).Abbreviations Amm total ammonia - bw body weight - CC chloride cell - CCFA chloride cell fractional area - cort/oGH cortisol/ovine growth hormone - dpm disintegrations per minute - J Amm net flux of total ammonia - J in unidirectional influx - J inCl- chloride ion uptake - J inNa+ sodium ion uptake - J netH+ net acidic equivalent flux - J TA net flux of titrable alkalinity - MS 222 ethyl-m-aminobenzoate - oGH ovine growth hormone - PVC pavement cell - SEM scanning electron microscope - TA titrable alkalinity  相似文献   

19.
The sensitivity to external pH of Cl- absorption was studied in isolated stripped intestinal mucosa of the eel, Anguilla anguilla, mounted in Ussing chambers. Short-circuit current, transepithelial potential difference and conductance were measured in bathing solutions containing various combinations of HCO3 --concentration (0–25 mmol·l-1), partial pressure of CO2 (0–76 mm Hg) and pH (6.9–7.9). A linear relationship was found between pH and short-circuit current in the range of pH studied both in HCO3 -/CO2 Ringer and in Hepes Ringer. The pH effect was almost completely reversible. It was not affected by the presence of mucosal Ba2+ (10-3 mol·l-1) but it was inhibited by the presence of luminal (10-5 mol·l-1) or serosal (10-4 mol·l-1) bumetanide. The results obtained suggest that the Cl- absorption in the European eel intestine is pH sensitive. The data do not indicate whether the pH affects directly the Na+–K+–Cl- cotransport and/or the basolateral Cl- conductance or other mechanisms indirectly linked to Cl- absorption.Abbreviations g t transepithelial conductance - Hepes N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid - I sc short circuit current - R t transepithelial resistence - V t transepithelial potential difference  相似文献   

20.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号