首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19) produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli were used for transglycosylating stevioside and rebaudiosides A with the use of starch as a donor. CGTases produced by B. stearothermophilus B-5076 B. macerans BIO-4m were the most effective biocatalysts. This method can be successfully used for direct transglycosylation of stevia extract without purification of its individual components.  相似文献   

2.
Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30?h with 2.4?mM stevioside, 7.2?mM sucrose, and 0.006?mM UDP was 78%.  相似文献   

3.
【目的】本工作对棘孢曲霉固体发酵抽提酶液转化甜菊糖进行了研究,并对转化产物进行鉴定及纯化分析。【方法】用高效液相色谱、液质联用及红外光谱等方法对转化新产物进行鉴定,对上清液中莱鲍迪苷A(RA)成分进行纯化。【结果】棘孢曲霉酶液在10 h内对甜菊糖中的甜菊苷(SS)、莱鲍迪苷C(RC)进行高效特异性转化,以沉淀的形式析出的转化产物经鉴定为甜菊醇,转化率高达98.0%,分离提纯后纯度为95.2%,回收率达84.0%.由于甜菊醇的沉淀分离,留在溶液中的RA更易被纯化。RA通过树脂吸附分离的回收率为80.5%.【结论】棘孢曲霉酶液对甜菊糖的一次转化可以同时得到甜菊醇和莱鲍迪苷A两种产品,是一种经济高效的工艺。  相似文献   

4.
Stevioside is a natural sweetener obtained from the leaves of Stevia rebaudiana. It is a glycoside of steviol and other glycosides of the same aglycone are also found in the plant. Stevioside is usually the major component in commercial products, but it is not the one with the best organoleptic properties. It has a bitter aftertaste and, for this reason, attempts have been made in order to modify its molecule. In this work, the commercial and purified stevioside were modified by hydrolytic enzymes from Gibberella fujikuroi. A screening was carried out on six strains of the fungus in order to select the most active. The production of the enzymes by the fungi was induced by its culture in a medium containing stevioside as the sole carbon source and the enzymatic extract was then used in the experiments. The products obtained were analyzed by HPLC-UV and HPLC-MS/MS. The results showed a significant increase in the concentration of rebaudioside A in the final product, which has better organoleptic properties than stevioside.  相似文献   

5.
Rebaudioside D is a sweetener from Stevia rebaudiana with superior sweetness and organoleptic properties, but its production is limited by its minute abundance in S. rebaudiana leaves. In this study, we established a multi-enzyme reaction system with S. rebaudiana UDP-glycosyltransferases UGT76G1, Solanum lycopersicum UGTSL2 and Solanum tuberosum sucrose synthase StSUS1, achieving a two-step glycosylation of stevioside to produce rebaudioside D. However, an increase in the accumulation of rebaudioside D required the optimization of UGTSL2 catalytic activity towards glucosylation of rebaudioside A and reducing the formation of the side-product rebaudioside M2. On the basis of homology modelling and structural analysis, Asn358 in UGTSL2 was subjected to saturating mutagenesis, and the Asn358Phe mutant was used instead of wild-type UGTSL2 for bioconversion. The established multi-enzyme reaction system employing the Asn358Phe mutant produced 14.4 g l−1 (1.6 times of wild-type UGTSL2) rebaudioside D from 20 g l−1 stevioside after reaction for 24 h. This system is useful for large-scale rebaudioside D production and expands our understanding of the pathways involved in its synthesis.  相似文献   

6.
7.
8.
The lipase of Candida cylindraceae was used to facilitate a combined enzymatic-chemical synthesis of the alkaloid, N-methyllaurotetanine. The basis for this synthesis is the regioselective enzymatic hydrolysis of the acetate ester functional group at the 2-position of diacetylboldine. Optimal esterase conditons for the yeast enzyme were established with p-nitrophenyl acetate as substrate and these were used in the hydrolysis of the alkaloid diacetate. The synthetic pathway described illustrates the value of enzymes as reagents in synthetic organic chemistry.  相似文献   

9.
The influence of chemical modification on the initial specific activity, residual activity, and deactivation kinetics of various enzymes is analyzed using a series mechanism. This straightforward multistate sequential model presented is consistent with the enzyme deactivation data obtained from different fields. The enzymes are placed in five different categories depending on the effect of chemical modification on initial specific activity and residual activity or stability. Wherever possible, structure-function relationships are described for the enzymes in the different categories. The categorization provides one avenue that leads to further physical insights into enzyme deactivation processes and into the enzyme structure itself.  相似文献   

10.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

11.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

12.

Objective

To investigate the cellulose modification process on kraft pulp during recycling by mono-endoglucanase.

Results

Pichia pastoris expressing endoglucanase, EG1, was grown in a 10 l fermenter yielding a high carboxymethyl cellulase (CMCase) activity of 340 U mg?1. EG1-mediated modification of kraft pulp resulted in a paper sheet with the tensile index and burst index increased by 10 and 6.5 %, respectively. The kink index (indicating abrupt bends in fibres) of the enzyme-treated group decreased sharply by 45 % after the first recycling, compared with a reduction of only 1 % in the control group. Furthermore, EG1 treatment decreased the growth of crystallinity from 73.5 to 73.2 % and crystal size from 7.45 to 7.21 nm, which alleviated paper aging.

Conclusion

Endoglucanase EG1 modifies the interfacial properties of fibers, which affects fibre morphology during the recycling process and improves the technical properties of the resulting pulp and paper.
  相似文献   

13.
We demonstrate here a rapid and cost-effective technique for nanoscale patterning of functional molecules on the surface of a DNA origami. The pattern is created enzymatically by transferring a functionalized dideoxynucleotide to the 3'-end of an arbitrary selected set of synthetic DNA oligonucleotides positioned approximately 6 nm apart in a 70 × 100 nm(2) rectangular DNA origami. The modifications, which are performed in a single-tube reaction, provide an origami surface modified with a variety of functional groups including chemical handles, fluorescent dyes, or ligands for subsequent binding of proteins. Efficient labeling and patterning was demonstrated by gel electrophoresis shift assays, reverse-phase HPLC, mass spectrometry, atomic force microscopy (AFM) analysis, and fluorescence measurements. The results show a very high yield of oligonucleotide labeling and incorporation in the DNA origami. This method expands the toolbox for constructing several different modified DNA origami from the same set of staple strands.  相似文献   

14.
15.
16.
NMR studies of the conformation of the natural sweetener rebaudioside A   总被引:1,自引:0,他引:1  
Rebaudioside A is a natural sweetener from Stevia rebaudiana in which four β-d-glucopyranose units are attached to the aglycone steviol. Its 1H and 13C NMR spectra in pyridine-d5 were assigned using 1D and 2D methods. Constrained molecular dynamics of solvated rebaudioside using NMR constraints derived from ROESY cross peaks yielded the orientation of the β-d-glucopyranose units. Hydrogen bonding was examined using the temperature coefficients of the hydroxyl chemical shifts, ROESY and long-range COSY spectra, and proton-proton coupling constants.  相似文献   

17.
Enzymes are potentially useful catalysts for polymerization as well as modification of polymers. While lipases have been used previously for polymerization reactions, they have not been used for modification of polymers. In this report, lipases were used to determine regioselective modification of ester functions in a telomer of poly(methyl acrylate). The influence of chain length on the extent of transesterification of methyl acrylate telomers of DP(n) 6-50 was studied by examining the relationship between the extents of enzymic modification to other telomerization parameters. The regioselectivity was observed when the average DP(n) of telomers is in a range of 6-22. At a higher DP(n) (>22), however, the average number of reacting ester functions per telomer strongly deviated from the theoretically predicted value. This phenomenon was suspected as a result of steric hindrance caused by folding of longer telomer chains. To verify this hypothesis, acrylate telomers at a DP(n) ranging from 10 to 42 were synthesized using a shorter telogen, i.e., 2,2'-ethanedithiol. The transesterification of these telomers showed a deviation in a degree of conversion when DP(n) was greater than 10, possibly indicating the inhibition caused by steric hindrance. Therefore, regioselective modification of acrylic polymers, which is difficult to achieve by conventional chemical methods, may be accomplished enzymatically.  相似文献   

18.
Carboxymethyl cellulose (CMC) with different degrees of substitution (DS) and molecular weights (MW) have been successfully hydrolyzed by cellulases sourced from different microorganisms. The extent of enzymatic hydrolysis of CMC was shown to decrease with increasing DS. According to chromatographic analyses, the best enzymatic degradation by the crude enzymic preparations employed was 47% when cellulase T from Trichoderma species acted on a CMC of DS = 0·7. However, the complete hydrolysis, required for a quantitative analysis, was reached when CMCs with DS up to 0·7 were degraded by cellulase P, a purified form of celluclast from Trichoderma reesei.  相似文献   

19.
High molecular weight alginates having a variety of initial composition and sequential structures were modified with a mannuronan-C-5 epimerase from Azotobacter vinelandii to yield polymers with a high content of guluronic acid and, hence, an enhanced ability to form gels with calcium ions. The monad, diad and triad frequencies in the modified polymers were determined by n.m.r. spectroscopy, and the strength of homogeneous gels prepared from them with calcium ions were measured and compared with those prepared from the starting materials and other naturally occurring alginates. Immobilization of the bacterial enzyme on Eupergite beads greatly increased its stability and favoured high degree of conversion.  相似文献   

20.
In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hydrolysis rate upon pretrement. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ballmilling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号