首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the construction of TnFuZ, a genetic tool for the discovery and mutagenesis of proteins exported from gram-positive bacteria. This tool combines a transposable element (Tn4001) of broad host range in gram-positive bacteria and an alkaline phosphatase gene (phoZ) derived from a gram-positive bacterium that has been modified by removal of the region encoding its export signal. Mutagenesis of Streptococcus pyogenes with TnFuZ (“FuZ” stands for fusions to phoZ) identified genes encoding secreted proteins whose expression was enhanced during growth in an aerobic environment. Thus, TnFuZ should be valuable for analysis of protein secretion, gene regulation, and virulence in gram-positive bacteria.

  相似文献   

2.
Strains of Streptococcus faecalis and S. faecium are known to produce ammonia from arginine, but only S. faecalis couples the adenosine triphosphate (ATP) produced through the arginine dihydrolase pathway to growth processes. The specific activities of the arginine dihydrolase enzymes were found to be much lower in S. faecium (0.01 to 0.10) than in S. faecalis (0.24 to 1.60). Phosphatase activities in both strains were similar (up to 0.11), but equaled or exceeded the activities of the arginine dihydrolase enzymes in S. faecium. The failure of S. faecium to show increased growth in arginine media is explained on the basis of low activities of the arginine dihydrolase enzymes coupled with sufficient phosphatase activity to negate any benefit from ATP formed.  相似文献   

3.
There is increasing concern regarding the presence of vancomycin-resistant enterococci in domestically farmed animals, which may act as reservoirs and vehicles of transmission for drug-resistant enterococci to humans, resulting in serious infections. In order to assess the potential for the use of monolaurin as a food preservative, it is important to understand both its target and potential mechanisms of resistance. A Tn917 mutant library of Enterococcus faecalis AR01/DGVS was screened for resistance (MIC, >100 microg/ml) to monolaurin. Three mutants were identified as resistant to monolaurin and were designated DGRM2, DGRM5, and DGRM12. The gene interrupted in all three mutants was identified as traB, which encodes an E. faecalis pheromone shutdown protein and whose complementation in trans restored monolaurin sensitivity in all three mutants. DGRM2 was selected for further characterization. E. faecalis DGRM2 showed increased resistance to gentamicin and chloramphenicol (inhibitors of protein synthesis), while no difference in the MIC was observed with the cell wall-active antibiotics penicillin and vancomycin. E. faecalis AR01/DGVS and DGRM2 were shown to have similar rates (30% cell lysis after 4 h) of cell autolytic activity when activated by monolaurin. Differences in cell surface hydrophobicity were observed between the wild type and the mutant, with the cell surface of the parent strain being significantly more hydrophobic. Analysis of the cell wall structure of DGRM2 by transmission electron microscopy revealed an increase in the apparent cell wall thickness and contraction of its cytoplasm. Taken together, these results suggest that the increased resistance of DGRM2 was due to a change in cell surface hydrophobicity, consequently limiting the diffusion of monolaurin to a potential target in the cytoplasmic membrane and/or cytoplasm of E. faecalis.  相似文献   

4.
There is increasing concern regarding the presence of vancomycin-resistant enterococci in domestically farmed animals, which may act as reservoirs and vehicles of transmission for drug-resistant enterococci to humans, resulting in serious infections. In order to assess the potential for the use of monolaurin as a food preservative, it is important to understand both its target and potential mechanisms of resistance. A Tn917 mutant library of Enterococcus faecalis AR01/DGVS was screened for resistance (MIC, >100 μg/ml) to monolaurin. Three mutants were identified as resistant to monolaurin and were designated DGRM2, DGRM5, and DGRM12. The gene interrupted in all three mutants was identified as traB, which encodes an E. faecalis pheromone shutdown protein and whose complementation in trans restored monolaurin sensitivity in all three mutants. DGRM2 was selected for further characterization. E. faecalis DGRM2 showed increased resistance to gentamicin and chloramphenicol (inhibitors of protein synthesis), while no difference in the MIC was observed with the cell wall-active antibiotics penicillin and vancomycin. E. faecalis AR01/DGVS and DGRM2 were shown to have similar rates (30% cell lysis after 4 h) of cell autolytic activity when activated by monolaurin. Differences in cell surface hydrophobicity were observed between the wild type and the mutant, with the cell surface of the parent strain being significantly more hydrophobic. Analysis of the cell wall structure of DGRM2 by transmission electron microscopy revealed an increase in the apparent cell wall thickness and contraction of its cytoplasm. Taken together, these results suggest that the increased resistance of DGRM2 was due to a change in cell surface hydrophobicity, consequently limiting the diffusion of monolaurin to a potential target in the cytoplasmic membrane and/or cytoplasm of E. faecalis.  相似文献   

5.
Wild flowers in the South of Spain were screened for Enterococcus faecalis and Enterococcus faecium. Enterococci were frequently associated with prickypear and fieldpoppy flowers. Forty-six isolates, from 8 different flower species, were identified as E. faecalis (28 isolates) or E. faecium (18 isolates) and clustered in well-defined groups by ERIC-PCR fingerprinting. A high incidence of antibiotic resistance was detected among the E. faecalis isolates, especially to quinupristin/dalfopristin (75%), rifampicin (68%) and ciprofloxacin (57%), and to a lesser extent to levofloxacin (35.7%), erythromycin (28.5%), tetracycline (3.5%), chloramphenicol (3.5%) and streptomycin (3.5%). Similar results were observed for E. faecium isolates, except for a higher incidence of resistance to tetracycline (17%) and lower to erythromycin (11%) or quinupristin/dalfopristin (22%). Vancomycin or teicoplanin resistances were not detected. Most isolates (especially E. faecalis) were proteolytic and carried the gelatinase gene gelE. Genes encoding other potential virulence factors (ace, efaA fs, ccf and cpd) were frequently detected. Cytolysin genes were mainly detected in a few haemolytic E. faecium isolates, three of which also carried the collagen adhesin acm gene. Hyaluronidase gene (hyl Efm ) was detected in two isolates. Many isolates produced bacteriocins and carried genes for enterocins A, B, and L50 mainly. The similarities found between enterococci from wild flowers and those from animal and food sources raise new questions about the puzzling lifestyle of these commensals and opportunistic pathogens.  相似文献   

6.
目的:利用临床耐药粪肠球菌分离裂解性噬菌体,为应用噬菌体治疗耐药粪肠球菌感染提供基础。方法:利用噬菌斑实验分离噬菌体并观察噬菌斑形态;双层平板培养法测定噬菌体效价、最佳感染复数及一步生长曲线;负染法电镜观察噬菌体形态;蛋白酶K/SDS法提取噬菌体基因组,酶切处理后琼脂糖凝胶电泳分析。结果:分离出一株噬菌体IME-EF1,该噬菌体能裂解多株临床分离的粪肠球菌;电镜观察呈蝌蚪形,最佳感染复数为1;通过绘制一步生长曲线,证明该噬菌体感染后的潜伏期为25 min,爆发期为35 min,裂解量为60 pfu。结论:研究结果表明利用临床分离的耐药粪肠球菌分离裂解性噬菌体是可行的,有望为耐药粪肠球菌的抗生素替代疗法奠定基础。  相似文献   

7.
The mature forms of the extracellular muramidase-2 of Enterococcus hirae and Streptococcus faecalis autolysin have very similar primary structures. Each consists of an active-site-containing N-terminal domain fused to a multiple-repeat C-terminal domain. Polypeptide segments occurring at equivalent places in these two bacterial wall lytic enzymes have homologues in two phage lysozymes and in three functionally unrelated proteins, illustrating the principle that protein molecules frequently are constructed from modules that are linked in a single polypeptide chain.  相似文献   

8.
Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future.  相似文献   

9.
One of the outstanding problems in the field of heat shock response has been to elucidate the mechanism underlying the induction of heat shock proteins (HSPs). In this work, we initiate an analysis of the expression of heat shock groEL and dnaK genes and their promoters in S. pyogenes. The synthesis of total cellular proteins was studied upon transfer of a log-phase culture from 37°C to 42°C by performing 5-min pulse-labeling experiments with 35S-Met. The heat shock responses in the pathogenic Gram-positive cocci, Enterococcus faecalis and Staphylococcus aureus, were also analyzed. Received: 12 July 2000 / Accepted: 27 August 2000  相似文献   

10.
Phosphate is an essential component of all cells that must be taken up from the environment. Prokaryotes commonly secrete alkaline phosphatases (APs) to recruit phosphate from organic compounds by hydrolysis. In this study, the AP from Halobacterium salinarum, an archaeon that lives in a saturated salt environment, has been functionally and structurally characterized. The core fold and the active-site architecture of the H. salinarum enzyme are similar to other AP structures. These generally form dimers composed of dominant β-sheet structures sandwiched by α-helices and have well-accessible active sites. The surface of the enzyme is predicted to be highly negatively charged, like other proteins of extreme halophiles. In addition to the conserved core, most APs contain a crown domain that strongly varies within species. In the H. salinarum AP, the crown domain is made of an acyl-carrier-protein-like fold. Different from other APs, it is not involved in dimer formation. We compare the archaeal AP with its bacterial and eukaryotic counterparts, and we focus on the role of crown domains in enhancing protein stability, regulating enzyme function, and guiding phosphoesters into the active-site funnel.  相似文献   

11.
12.
粪肠球菌和屎肠球菌耐药性分析   总被引:2,自引:0,他引:2  
目的 监测我院肠球菌中粪肠球菌株和屎肠球菌株的耐药性,为临床合理应用抗菌药物提供依据。方法 采用法国生物梅里埃公司的GPI板进行细菌鉴定及药敏试验,应用whonet5软件统计粪肠球菌和屎肠球菌的耐药率。结果 粪肠球菌和屎肠球菌对氯霉素、呋喃妥因、万古霉素有较好体外抗菌活性,耐药率都在50%以下,对万古霉素的耐药率在1%以下。粪肠球菌对青霉素、高水平庆大霉素、环丙沙星、利福平、红霉素等大部分抗菌素的耐药率有逐年下降趋势,而屎肠球菌对环丙沙星、利福平、呋喃妥因等抗菌素的耐药率则有上升趋势,屎肠球菌对大多数抗菌素耐药率都高于粪肠球菌。结论 粪肠球菌和屎肠球菌呈多重耐药,临床用药应结合药敏试验结果合理选择抗菌药物。  相似文献   

13.
Abstract

An extracellular alkaline phosphatase from Penidllium chrysogenum was purified to homogeneity using DEAE ion-exchange chromatography and size exclusion chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 58,000. The mobility of the native enzyme on a Superose 12 column suggests that the active form of the enzyme is a monomer. The enzyme catalyzes the hydrolysis of phosphate from a variety of substrates including p-Miitrophenyl phosphate, α-naphthyl phosphate and the anti-tumor compound etoposide phosphate. The apparent Km for the substrate p-nitrophenyl phosphate is 1.3 mM and the enzyme is inhibited by inorganic phosphate. The pH optimum of the enzyme is 9.0 with a broad optimal temperature range between 40 and 50 °C. The isoelectric point of the enzyme is approximately 5.5. The enzyme is a glycoprotein; digestion with endoglycosidase H indicates that the protein consists primarily of N-inked carbohydrates. Enzymatic activity is enhanced by the addition of divalent cations such as Mg++ and Mn++ and inhibited by addition of a chelator such as EDTA suggesting a metal ion requirement. The enzyme was found to be an inexpensive catalyst for the conversion of etoposide phosphate to etoposide in the manufacture of this anti-tumor compound.  相似文献   

14.
Compared with exponential growing bacteria, carbohydrate-starved cells of Enterococcus faecalis exhibit a high level of resistance to sodium hypochlorite with maximal resistance observed in cultures entering stationary phase. Chloramphenicol treatment, at various stages of growing phase, does not abolish the hypochlorite resistance of starved cells. However, Enterococcus faecalis conditioned by low sodium hypochlorite concentrations does not develop tolerance towards a lethal dose of the disinfectant. Two-dimensional gel analysis shows that protein synthesis is drastically turned off by hypochlorite treatment, whereas synthesis of a few proteins is enhanced by a low concentration of this chemical agent. Received: 5 September 1996 / Accepted: 29 October 1996  相似文献   

15.
A recombinant form of CAMP factor of Streptococcus agalactiae has been expressed as glutathione S-transferase-CAMP fusion protein in Escherichia coli. After thrombin cleavage of the fusion protein, the recombinant CAMP factor exhibited hemolytic activity comparable with that of the native form. Osmotic protection experiments with polyethylene glycols show that CAMP factor forms discrete transmembrane pores with a diameter upward of 1.6 nm on susceptible membranes; electron microscopy reveals circular membrane lesions of heterogeneous size, up to 12-15 nm in diameter. Liposome permeabilization studies show that pore formation is a highly cooperative process, which suggests that it involves the oligomerization of CAMP factor. Chemical cross-linking experiments also support an oligomeric mode of action.  相似文献   

16.
17.
18.
粪肠球菌精氨酸脱亚胺酶酶学性质研究   总被引:1,自引:0,他引:1  
经硫酸铵分级沉淀、Q-Sepharose Fast Flow阴离子交换层析、SephadexG-75凝胶柱层析从NJ402自溶细胞超声破碎液中提纯得到精氨酸脱亚胺酶(ADI), 纯化倍数为34.5, 活力回收率为31.4%, 经SDS-PAGE以及Native-PAGE测定结果表明, ADI亚基分子量约为46 kD, 该酶非变性情况下的分子量约为190 kD左右, 该酶为同四聚体结构。酶学性质研究结果表明:ADI催化最适温度和最适pH分别为50℃和6.5, 在45℃以下和pH 5~8之间有很好的稳定性。ADI是L-型脱亚胺酶, 具有严格的光学选择性, 适当浓度的Mn2+、Mg2+、Co2+对ADI催化活力的促进作用较大, 高浓度的Zn2+和Co2+对酶有一定程度的抑制作用, L-瓜氨酸对酶无抑制作用而L-鸟氨酸却表现出较强的抑制作用。ADI在最佳催化条件下作用于L-精氨酸的米氏常数为3.2686 mmol/L, 最大反应速度为2.44 μmol/min。  相似文献   

19.
粪肠球菌精氨酸脱亚胺酶酶学性质研究   总被引:1,自引:0,他引:1  
经硫酸铵分级沉淀、Q-Sepharose Fast Flow阴离子交换层析、SephadexG-75凝胶柱层析从NJ402自溶细胞超声破碎液中提纯得到精氨酸脱亚胺酶(ADI),纯化倍数为34.5,活力回收率为31.4%,经SDS-PAGE以及Native-PAGE测定结果表明,ADI亚基分子量约为46 kD,该酶非变性情况下的分子量约为190 kD左右,该酶为同四聚体结构.酶学,胜质研究结果表明:ADI催化最适温度和最适pH分别为50℃和6.5,在45℃以下和pH 5~8之间有很好的稳定性.ADI是L-型脱亚胺酶,具有严格的光学选择性,适当浓度的Mn2 、Mg2 、Co2 对ADI催化活力的促进作用较大,高浓度的Zn2 和Co2 对酶有一定程度的抑制作用,L-瓜氨酸对酶无抑制作用而L-鸟氨酸却表现出较强的抑制作用.ADI在最佳催化条件下作用于L-精氨酸的米氏常数为3.2686 mmol/L,最大反应速度为2.44 μmol/min.  相似文献   

20.
The alkaline shock response in Enterococcus faecalis was studied in this work. Cells adapted to an optimum pH of 10.5 were tolerate to pH 11.9 conditions but acquired sensitivity to acid damage. An analysis of stress proteins revealed that 37 polypeptides were amplified. Two of these are DnaK and GroEL. The combined results show that bile salts and alkaline stress responses are closely related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号