首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the effect of bilirubin on the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system consisting of the membrane and cytosolic fractions of pig neutrophils. Preincubation of the cytosolic fraction with bilirubin before the addition of sodium dodecyl sulfate resulted in the time- and dose-dependent inhibition of the superoxide production while the preincubation of the membrane fraction with the tetrapyrrole did not result in the inhibition. When the pigment was added after the initiation of the reaction, the ongoing production was not affected by the addition. Other tetrapyrroles, such as hemin, protoporphyrin and biliverdin, also inhibited the production. The results indicate that bilirubin inhibits the activation process of the superoxide producing NADPH oxidase by decreasing the potency of the cytosolic fraction and its inhibitory effect seems to be due to the hydrophobic nature of the tetrapyrrole.  相似文献   

2.
We reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC.  相似文献   

3.
GTP and GTP-gamma-S enhanced several-fold the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system of pig neutrophils consisting of the membrane fraction and two cytosolic fractions separated by gel filtration. The enhanced activity was decreased by the addition of GDP in a dose-dependent manner, but 70% of the activity in the absence of GTP remained even at 1 mM GDP. Only one cytosol fraction besides the membrane fraction was required for the activation in the presence of GTP. The cytosol fraction was analyzed by chromatography on 2',5'-ADP agarose and two components responsible for the GTP-dependent and independent activation were separated. These results suggest that at least two pathways are available for the activation of superoxide production in the cell-free system of pig neutrophils.  相似文献   

4.
Partial purification of the cytosolic factors which are required for the activation of O2- producing enzyme (NADPH oxidase) was performed using guinea pig neutrophils. Three active cytosolic factors were obtained by using the combination of IEC-SP (cation-exchange) and IEC-QA (anion-exchange) HPLC. One factor (termed SP-1e which was adsorbed on IEC-SP column, somewhat activated the NADPH oxidase by itself. The molecular weight of SP-1 was estimated to be approximately 260 kDa. In contrast, the other two factors (termed QA-1 and QA-2, respectively), which were adsorbed on IEC-QA column, did not activate the NADPH oxidase by themselves but activated the enzyme only in the presence of SP-1. When three factors were combined, they activated the oxidase synergistically, and the activity recovered was almost the same as that observed with the unfractionated cytosol. These results suggest that at least three different cytosolic factors are required for the full activation of NADPH oxidase in guinea pig neutrophils.  相似文献   

5.
A soluble extract of neutrophil granules interfered with activation of the NADPH oxidase in a cell-free system. The extract had no effect on superoxide production by preactivated enzyme. The inhibitory activity was retained during dialysis and was lost upon exposure to proteinase K indicating that the active substance was a protein. The inhibitor exhibited a high stability at elevated temperatures. Chromatography of granules extract on ion exchangers implied that the inhibitor was a positively charged protein eluting from S Sepharose cation exchanger above 0.4M concentration of NaCl.  相似文献   

6.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.  相似文献   

7.
Parameters governing the extent of activation of the O2- generating oxidase in a cell-free system derived from bovine neutrophils were examined. The reconstituted system consisted of the following: a particulate fraction enriched in plasma membrane and containing the oxidase, a soluble fraction containing cytosolic factor(s) required for oxidase a soluble fraction containing cytosolic factor(s) required for oxidase activation, a non hydrolyzable analog of GTP, and either arachidonic acid or sodium dodecyl sulfate. When the amount of arachidonic acid or sodium dodecyl sulfate was maintained at a fixed value with respect to the amount of membrane used, a sigmoidal response of oxidase activity to increasing amounts of cytosol added was observed. In contrast, when the concentration of arachidonic acid or sodium dodecyl sulfate was properly adjusted with respect to that of membrane and cytosol, the curve relating oxidase activity to cytosol was hyperbolic, pointing to a simple michaelian relationship for the dependence of oxidase activation on the activating factor(s) of cytosol. Another parameter affecting oxidase activation was the ionic strength of the reconstitution medium, the extent of activation being lower at high ionic strength.  相似文献   

8.
The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity.  相似文献   

9.
The 2',3'-dialdehyde derivative of NADPH (oNADPH) acts as a coenzyme for the reaction catalyzed by bovine liver glutamate dehydrogenase. Incubation of 250 microM oNADPH with enzyme for 300 min at 30 degrees C and pH 8.0 yields covalent incorporation of 1.0 mol of oNADPH/mol of enzyme subunit. The modified enzyme has a functional catalytic site and is activated by ADP, but is no longer inhibited by high NADH concentrations and exhibits decreased sensitivity to GTP inhibition. Using the change in inhibition by 600 microM NADH or 1 microM GTP to monitor the reaction leads to rate constants of 44.0 and 41.5 min-1 M-1, respectively, suggesting that loss of inhibition by the two regulatory compounds results from reaction by oNADPH at a single location. The oNADPH incorporation is proportional to the decreased inhibition by 600 microM NADH or 1 microM GTP, extrapolating to less than 1 mol of oNADPH/mol of subunit when the maximum change in NADH or GTP inhibition has occurred. Modified enzyme is still 93% inhibited at saturating levels of GTP, although its K1 is increased 20-fold to 4.6 microM. The kinetic effects caused by oNADPH are not prevented by alpha-ketoglutarate, ADP, 5 mM NADH, or 200 microM GTP alone, but are prevented by 5 mM NADH with 200 microM GTP. Incorporation of oNADPH into enzyme at 255 min is 0.94 mol/mol of peptide chain in the absence of ligands but only 0.53 mol/mol of peptide chain in the presence of the protectants 5 mM NADH plus 200 microM GTP. These results indicate that oNADPH modifies specifically about 0.4-0.5 sites/enzyme subunit or about 3 sites/enzyme hexamer and that reaction occurs at a GTP-dependent inhibitory NADH site of glutamate dehydrogenase.  相似文献   

10.
A soluble protein containing very weak NADPH-dependent nitroblue tetrazolium reductase activity was partially purified from the cytosol of dormant human neutrophils by DEAE-5PW ion exchange chromatography. This preparation of cytosolic reductase exhibited three nitroblue tetrazolium-reducing bands with approximate molecular masses of 95, 45, and 40 kDa on non-denaturing gel electrophoresis in the presence of 35 mM n-octyl-glucoside, and two major bands with apparent masses of 45 and 40 kDa along with a few variable minor bands on SDS-polyacrylamide gel electrophoresis. The 45 kDa protein is susceptible to endogenous proteases and is rapidly converted to proteolysis products at 36 degrees C. The partially purified cytosolic protein(s) provided a concentration-dependent activation of NADPH oxidase in the cell-free system composed of the membrane, arachidonate and magnesium ion. In addition, polyclonal antibodies raised against rabbit hepatic NADPH:cytochrome P-450 reductase [EC 1.6.99.1] showed positive immunological reactivity toward cytosolic 45 kDa protein and also caused 30 to 40% inhibition of superoxide anion production in the cell-free system.  相似文献   

11.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

12.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.  相似文献   

13.
The gp91phox subunit of flavocytochrome b558 is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b558. gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin–gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H2O2 generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H2O2 production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins.  相似文献   

14.
Diphenylene iodonium (Ph2I), a lipophilic reagent, is an efficient inhibitor of the production of O2- by the activated NADPH oxidase of bovine neutrophils. In a cell-free system of NADPH oxidase activation consisting of neutrophil membranes and cytosol from resting cells, supplemented with guanosine 5'-[gamma-thio]triphosphate, MgCl2 and arachidonic acid, or in membranes isolated from neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate, addition of a reducing agent, e.g. NADPH or sodium dithionite, markedly enhanced inhibition of the NADPH oxidase by Ph2I. The membrane fraction was found to contain the Ph2I-sensitive component(s). In the presence of a concentration of Ph2I sufficient to fully inhibit O2- production (around 10 nmol/mg membrane protein), addition of catalytic amounts of the redox mediator dichloroindophenol (Cl2Ind) resulted in a by-pass of the electron flow to cytochrome c, the rate of which was about half of that determined in non-inhibited oxidase. A marked increase in the efficiency of this by-pass was achieved by addition of sodium deoxycholate. The Cl2-Ind-mediated cytochrome c reduction was negligible in membranes isolated from resting neutrophils. At a higher concentration of Ph2I (100 nmol/mg membrane protein), the Cl2Ind-mediated cytochrome c reductase activity was only half inhibited, which indicated that, in the NADPH oxidase complex, there are at least two Ph2I sensitive components, differing by their sensitivity to the inhibitor. At low concentrations of Ph2I (less than 10 nmol/mg protein), the spectrum of reduced cytochrome b558 in isolated neutrophil membranes was modified, suggesting that the component sensitive to low concentrations of Ph2I is the heme binding component of cytochrome b558. Higher concentrations of Ph2I were found to inhibit the isolated NADPH dehydrogenase component of the oxidase complex. A number of membrane and cytosolic proteins were labeled by [125I]Ph2I. However, the radiolabeling of a membrane-bound 24-kDa protein, which might be the small subunit of cytochrome b558, responded more specifically to the conditions of activation and reduction which are required for inhibition of O2- production by Ph2I. The O2(-)-generating form of xanthine oxidase was also inhibited by Ph2I. Inhibition of xanthine oxidase, a non-heme iron flavoprotein, by Ph2I had a number of features in common with that of the neutrophil NADPH oxidase, namely the requirement of reducing conditions for inhibition of O2- production by Ph2I and the induction of a by-pass of electron flow to cytochrome c by Cl2Ind in the inhibited enzyme, suggesting some similarity in the molecular organization of the two enzymes.  相似文献   

15.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

16.
Matrix metalloproteinase-9 (MMP-9) is involved in physiological tissue remodelling processes as well as in tumor invasion and metastasis. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) increases MMP-9 secretion from normal human epidermal keratinocytes (NHEK) in vivo and in vitro. Here we show that the flavoprotein inhibitor diphenyleneiodinium (DPI) and the NADPH oxidase inhibitor apocynin block TPA-induced MMP-9 secretion of NHEK in vitro. Furthermore, N-acetyl-L-cysteine and L-cysteine lowered TPA-induced MMP-9 secretion, suggesting an involvement of reactive oxygen species(ROS). TPA exerts its effect on MMP-9 gene expression and secretion via the superoxide-producing enzyme NADPH oxidase: TPA rapidly stimulates generation of superoxide anion as well as gene expression of two cytosolic NADPH oxidase subunits (p47-phox and p67-phox) after 2 h, which is followed by induction of MMP-9 gene expression after 4 h. Taken together, the novel finding herein is the TPA-induced MMP-9 secretion from normal human epidermal keratinocytes through a NADPH oxidase dependent pathway.  相似文献   

17.
18.
The effect of inositol lipids on the SDS-initiated cell-free activation of NADPH oxidase in membranes of human neutrophils was investigated. In a system consisting of low density membranes, cytosol and SDS, low doses of phosphatidylinositol, phosphatidylinositol mono- and biphosphates and phosphatidic acid interfered with activation of the oxidase. The inhibition was relieved by increasing concentrations of the cytosol. Conversely, preincubation of multilamellar phosphoinositide vesicles with cytosol reduced its ability to support activation of the oxidase.  相似文献   

19.
A soluble oxidase from phorbol-stimulated pig neutrophils contained FAD and cytochrome b-245. A typical preparation produced 13.03 mol of superoxide (O2-.) X S-1 X mol of cytochrome b-1 (348 nmol X min-1 X mg of protein-1). In the aerobic steady state, cytochrome b was 8.9% reduced. Steady-state cytochrome b reduction was absent from extracts of unstimulated cells; Km values for NADPH, for O2-. production and cytochrome b reduction were similar. The calculated aerobic rate of cytochrome b reduction was equal to the measured rate of O2-. production in a variety of preparations and in the presence of a range of inhibitors. Under anaerobic conditions the rate was slow: O2 is apparently required for rapid electron flow into the oxidase complex. Cytochrome b is shown to be kinetically competent to act as part of the O2-.-generating complex.  相似文献   

20.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号