首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Four insertions of IS1 in the leader sequence of the gal operon of E. coli have been analysed.Two of them occur at the same position, but in opposite orientations. The other two are inserted one nucleotide to one side and four nucleotides to the other side, respectively.In each case, nine base pairs of the leader sequence of the gal operon are duplicated directly, and are found flanking the termini of IS1 at its junction with the gal operon. These repeated sequences differ from each other as expected from the different insertion sites.  相似文献   

2.
Summary The mini IS elements IS6 and IS7 have been detected in constitutive gal + revertants of galOP-308::IS2 (I), in which the expression of the gal operon is turned off by IS2 in orientation I. Both, IS6 and IS7, are integrated into IS2 proximal to the gal structural genes. IS6 is 115 base pairs long and causes 50% constitutive expression of the gal genes. IS7 is only 65 base pairs long and the gal operon is expressed 20% constitutively compared to the gal + wild type operon. Both IS6 and IS7 are excised frequently, in the absence of selective pressure. These findings are discussed with respect to the evolution of gene expression.  相似文献   

3.
Summary About 8 copies of the DNA sequence IS1 (which consists of 800 nucleotide pairs) and about 5 copies of the DNA sequence IS2 (1400 nucleotide pairs) have been detected by DNA-DNA hybridization in the chromosome of E. coli K-12. No homology is observed between IS1 and IS2. Both IS1 and IS2 are also found in the DNA of the F plasmid.  相似文献   

4.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

5.
Summary The gal3 mutation of E. coli, which arose by the insertion of IS2 in the OP region of the gal operon, reverts spontaneously by excision of the IS2 to produce inducible revertants or by mutational alterations of IS2 to produce constitutive revertants. However, gal3() strains bearing chlD-pgl deletions produce constitutive revertants alone. We proposed that deletions formed in the presence of IS2 terminate specifically at its right end, so that revertants arising by excision of IS2 fuse the gal genes to other promoters. Therefore, the revertants are exclusively constitutive.The above hypothesis was tested by electron microscopy of IS2-specific deletions. Spontaneous chlD-pgl deletions were isolated from gal c331 (a revertant of gal3 which retains IS2) and transferred to gal genomes. Electron microscopy of DNA heteroduplexes from these phages confirmed that all of the deletions examined have one end-point fixed at the right end of IS2, whereas their other end-points are variable. In each case, the complete IS2 element was apparently retained. This specificity was also detectable in a revertant (gal c200) which retains only the right 1/5 portion of the IS2. The frequencies of these deletions were generally increased in constitutive revertants of gal3. Since a galO cmutant did not show a similar increase, it seems that this effect depends upon a base sequence provided by IS2. Moreover, the presence of prophage contributes to the specificity and, in some instances, the frequency of IS2-specific deletions.A mechanism for the formation of the IS2-specific deletions has been proposed. A base sequence located at, or near, the right end of IS2 is recognized and nicked by a specific endonuclease. The nick is enlarged by unidirectional, exonucleolytic degradation to produce deletions extending outwards from the insertion. In constitutive revertants, the nicking site may be exposed to endonucleolytic attack more frequently.  相似文献   

6.
Summary IS4-DNA has been hybridized to separated DNA fragments of E. coli K12 strain M28 and to three mutants caused by transposition of IS4 to galT. The parental strain shows one band hybridizing to IS4 representing one copy of IS4 in the chromosome. The mutants have this copy retained and show in addition a second band corresponding to the IS4 copy in galT. The experiments support the hypothesis that transposition of IS4 is accompanied by replication of the element.  相似文献   

7.
IS30, a new insertion sequence of Escherichia coli K12   总被引:6,自引:0,他引:6  
Summary Three independent spontaneous mutations of prophage P1 affecting the ability of the phage to reproduce vegetatively are due to the insertion of a mobile genetic element, called IS 30. The same sequence is also carried in the R plasmid NR 1-Basel, but not in the parental plasmid NR 1. Southern hybridisation study indicates that the Escherichia coli K 12 chromosome carries several copies of IS 30 as a normal resident. IS 30 is 1.2 kb long and contains unique restriction cleavage sites for Bg/II, ClaI, HindIII, NciI and HincII, and it is cleaved twice by the enzymes HpaII and TaqI. The ends of IS 30 are formed by 26 bp long inverted repeats with 3 bases mismatched. Upon transposition IS 30 generates a duplication of only 2 bp of the target. The following observations suggest a pronounced specificity in target selection by IS 30. In transposition to the phage P 1 genome a single integration site was used three times independently, and in both orientations. A short region of sequence homology has been identified between the P 1 and NR 1-Basel insertion sites. IS 30 has mediated cointegration as well as deletion. The entire IS 30 sequences were duplicated in the cointegrates between a pBR 322 derivative containing IS 30 and the genome of phage P 1–15, and several loci on the P1–15 genome served as fusion sites, some of which were used more than once.  相似文献   

8.
Two kinds of insertions in bacterial genes   总被引:38,自引:0,他引:38  
Summary Six insertion mutations in the gal operon of E. coli and two insertion mutations in the xycIIOP operon of bacteriophage lambda were tested for homology by annealing separated strands of lambda dgal DNA carrying the insertions, and inspection in the electron microscope.Class 1, consisting of the gal mutations OP 128, OP 141, T-N 116, OP 306, T-N 102 and the lambda mutation r14 are about 800 nucleotide pairs long, completely homologous and not circularly permuted. The first three insertions of class 1 are integrated in one direction with respect to the adjacent genes, the other three in the opposite direction. The DNA inserted in this class of mutations is called IS1.Class 2 consists of the gal insertion OP 308 and the lambda insertion r32. They are about 1400 nucleotide pairs long. The two are integrated in opposite direction with respect to the chromosome of dgal. The DNA in insertion mutations of class 2 will be called IS 2. IS1 and IS2 do not share any detectable homology.These data are supported by cross-hybridization experiments using RNA transcribed in vitro from lambda dgal or lambda DNA carrying one insertion and DNA carrying either the same or a different insertion.Similar results were obtained by Malamy, Fiandt, Szybalski and Fiandt, Szybalski, Malamy (accompanying papers).  相似文献   

9.
10.
In Streptococcus lactis ML3, the lactose plasmid (pSK08) forms cointegrates with a conjugal plasmid (pRS01). It has been proposed that cointegration is mediated by insertion sequences (IS) present on pSK08 (D. G. Anderson and L.L. McKay, J. Bacteriol. 158:954-962, 1984). We examined the junction regions of the cointegrate pPW2 and the corresponding regions of pSK08 (donor) and pRS01 (target) and identified a new IS element on pSK08 (ISS1S) which was involved in and duplicated during formation of pPW2. ISS1S was 808 base pairs (bp) in size, had 18-bp inverted repeats (GGTTCTGTTGCAAAGTTT) at its ends, contained a single long open reading frame encoding a putative protein of 226 amino acids, and generated 8-bp direct repeats of target DNA during cointegrate formation. An iso-IS element, ISS1T, which is duplicated in some other cointegrate plasmids, was also found on pSK08. ISS1T was also 808 bp in size and was identical to ISS1S in sequence except for 4 bp, none of which altered the inverted repeats or amino acid sequence of the open reading frame. Comparison of ISS1 with gram-negative IS26 revealed strong homologies in size (820 bp), sequence of inverted repeats (GGCACTGTTGCAAA), size of direct repeats generated after cointegration (8 bp), and number, size, and amino acid sequence (44.5% identical) of the open reading of frame.  相似文献   

11.
N D Grindley 《Cell》1978,13(3):419-426
Three independent integrations of the E. coli insertion sequence, IS1, into the gal operon have been analyzed. DNA sequences of portions of the wild-type galT gene which act as the target sites for these insertions, as well as the corresponding gal/IS1 junctions, are reported. Two features are particularly noteworthy. First, similar sequences appearing in inverted orientation consitute the ends of IS1: 18 of the terminal 23 base pairs at each end are identical. Second, in all three insertions, a 9 base pair segment found once in the wild-type sequence at the site of insertion is duplicated and appears in the same orientation at each end of the inserted element. The sequence of this 9 base pair repeat is different for each insertion analyzed. No homology between the inverted repeat sequences at the ends of IS1 and the sequences of the target sites is observed. Models for the mechanism of IS1 insertion are proposed.  相似文献   

12.
Summary The gal3 mutation of E. coli is an insertion of a DNA sequence, 1,100 base pairs in length, into the operator-promoter region of the galactose operon. This mutation reverts spontaneously to gal+ by excision of the insertion to produce stable, inducible revertants, or by tandem duplications of the gal operon to produce unstable, constitutive revertants. The nature of a third class of revertants, which are stable and constitutive, is the subject of the present study.The stable, constitutive class of revertants included approximately 30% of all gal+ revertants obtained from a gal3() strain. Although the constitutive reversions could be transduced by , the efficiency was found to be extremely poor and the rare transductants which did appear seemed to originate from abnormal transducing particles. It was concluded that these reversions were not normally packaged by .In order to facilitate the packaging of these reversions, the chlD-pgl region was deleted from the parent gal3() strain. Unexpectedly, the gal3 mutation in the majority of these deletions reverted to produce stable, constitutive reversions exclusively. The explanation proposed was that the chlD-pgl deletions had also removed part of the gal operator-promoter up to the gal3 insertion, so that simple excisions of the insertion yielded stable, constitutive revertants by connecting the gal structural genes to a different promoter. These revertants were not considered to be true representatives of the stable, constitutive class. The specificity of deletion end-points at the insertion was found only in the gal3() strain, and not in gal +, gal +(), or gal3 strains. Moreover, the frequency of spontaneous chlD-pgl deletions increased 10- to 15-fold in presence of the gal3 insertion.A gal phage bearing a true stable, constitutive reversion (gal c 200) was isolated from the revertant strain by subsequent deletion of the chlD-pgl segment (31). Electron micrographs of gal + and gal c 200 31(chlD pgl) DNA heteroduplexes were interpreted to indicate that the stable, constitutive reversion had arisen by a deletion of 3/4 of the gal3 insertion sequence.The main conclusions are: (i) the stable, constitutive reversions of gal3 can arise by partial deletions of the insertion sequence, apparently by elimination of the nucleotide sequence which causes polarity; (ii) the chlD-pgl deletions may exhibit preferential termination at the right extremity of the gal3 insertion in presence of prophage ; and (iii) the gal3 insertion appears to inhibit the production of gal particles by providing a nucleotide sequence which is recognized and degraded by a specific endonuclease. It is suggested that inhibition of transducing particle formation by gal3 and the preferred termination of deletions at gal3 might represent related phenomena.  相似文献   

13.
Summary Cell-free synthesis of galactose enzymes was directed by heteroduplex DNA carrying an amber mutation in thegal T gene on one DNA strand, the wildtype configuration on the complementary strand. Comparison with the corresponding homoduplex DNA preparations shows that the presence of the wildtype base sequence in the l-strand is necessary and sufficient for the synthesis of active enzyme. Single stranded DNA of either configuration is inactive in this system.  相似文献   

14.
Non-random distribution of deletion endpoints in the gal operon of E. coli   总被引:3,自引:0,他引:3  
Summary The physical distances between endpoints of deletions in the gal operon of dgal phages previously isolated and mapped by genetic methods have been measured by electron microscopy of heteroduplex DNA. Thus, the galT and galK sites previously mapped by genetic methods, may be assigned to 13 and 4 intervals, respectively, of known physical lengths. The physical data clearly show a nonrandom distribution of these deletion endpoints.On the other hand, a large number of deletions in the gal operon obtained as survivors of a cI857 lysogenic strain at 42°C also show a non-random distribution of endpoints of deletions in the gal genes. There are at least two sites in the gal genes at which we observed a clustering of endpoints of deletions within the same regions of dgal del-phages and in the bacterial deletion mutants.  相似文献   

15.
Theoretical calculations predict that the differential melting curves for random polynucleotide sequences having lengths up to several tens of thousands of base pairs have a clear-cut fine structure. This structure appears in the form of multiple narrow peaks 0.3–0.4°C wide on the bell shaped main curve. The differential melting curves have different shapes for different specific sequences. The theory also predicts the disappearance of the fine structure when the length of the sequence increases and when circular, covalently closed DNA is considered instead of the open structure. The predictions of the theory were confirmed by the measurements of differential melting curves for open and covalently closed circular forms of DNA for PM2 phage (N = 104 base pairs) and also for other phage DNA's of different length: T7 (N = 3.8 × 104); SD (N = 9.2 × 104); T2 (N = 17 × 104). It was shown that the effect of fine structure results mainly from the cooperative melting out of DNA regions 300–500 base pairs long.  相似文献   

16.
We demonstrate that base substitutions in the IS1 sequence affect the length of the nucleotide sequence which is duplicated during IS1-mediated co-integration. IS1K, an IS1 variant present in the Escherichia coli chromosome, has seven base substitutions in its sequence as compared with that of IS1R derived from the plasmid R100. All substitutions are located in the internal region of IS1K. We have constructed plasmids containing IS1R, IS1K and hybrids between them: one contains four base substitutions causing an amino acid substitution in the insA gene and the other has three substitutions producing an amino acid substitution in the insB gene. We have isolated co-integrate plasmids formed by each IS1 and analysed nucleotide sequences of the target sites duplicated at the co-integration junctions. The results show that IS1K generates duplications of 8 or 14 bp as well as 9 bp, while IS1R exclusively generates the 9-bp duplications. Both hybrid IS1s also create 8- or 7-bp target duplications in addition to 9-bp duplications. These results indicate that the base substitutions in either insA or insB are sufficient for the occurrence of unusual target duplications, suggesting that both genes are involved in the target duplication.  相似文献   

17.
We describe two insertion elements isolated from Caulobacter crescentus that are designated IS298 and IS511. These insertion elements were cloned from spontaneous flagellar (fla) gene mutants SC298 and SC511 derived from the wild-type strain CB15 (ATCC 19089), in which they were originally identified as insertions in the flbG operon of the hook gene cluster (N. Ohta, E. Swanson, B. Ely, and A. Newton, J. Bacteriol. 158:897-904, 1984). IS298 and IS511 were each present in C. crescentus CB2 and CB15 in at least four different positions, but neither was present in strain CB13 or in several Caulobacter species examined, including C. vibrioides, C. leidyia, and C. henricii. Nucleotide sequence analysis across the chromosome-insertion element junctions showed that IS298 is located 152 base pairs (bp) upstream from the ATG translation start of the hook protein gene flaK, where it is bounded by a 4-bp direct repeat derived from the site of insertion, and that IS511 is inserted at codon 186 of the flaK coding sequence, where it is also bounded by a 4-bp direct repeat duplicated from the site of insertion. The ilvB102 mutation in strain SC125 was also shown to result from insertion sequence IS511, but no duplication of the genomic sequence was present at the insertion element junctions. IS298 contains an imperfect terminal inverted repeat 16 bp long, and IS511 contains a 32-bp inverted repeat at the termini. IS298 and IS511 are the first insertion elements described in C. crescentus.  相似文献   

18.
The genome of Thiobacillus ferrooxidans contains at least two different repetitive DNA elements. One of these elements, termed IS T2 has been sequenced and shown to exhibit the characteristics of a typical prokaryotic insertion sequence. Furthermore, preliminary evidence has implicated IS T2 in genomic rearrangements, although the mechanism of rearrangement, whether by transposition or recombination, has not been established. In this report we provide evidence from detailed restriction enzyme analyses and DNA sequencing data that support a model of transposition, consistent with the notion that IS T2 is a mobile insertion sequence.  相似文献   

19.
Escherichia coli IS186 was isolated from cDNA libraries made from rainbow trout RNA and maintained in E. coli RR1. The element was 1,347 base pairs in length, had a perfect inverted repeat of 25 base pairs, and had an open reading frame of 375 amino acids. The hypothetical protein sequence of IS186 had limited homology to the E. coli IS4 hypothetical protein I sequence. There were three copies of IS186 in E. coli RR1.  相似文献   

20.
Summary Transposition events mediated by plasmid-borne copies of the insertion sequence IS3 of Escherichia coli are difficult to detect because of a low frequency of cointegrate formation. We found that cointegration activity could be strongly enhanced by using plasmid constructions in which a second IS3 element, disabled by a large deletion, was placed adjacent to an intact IS3 copy. Attempts to construct plasmids containing two adjacent intact IS3 copies were unsuccessful, probably because of instability. Transpositional hyperactivity of tandemly duplicated IS sequences was previously described for spontaneous duplications of IS21 and IS30 and may well be a more general phenomenon. The frequency of cointegration events was also strongly increased in an E. coli strain deficient in Dam methylation, suggesting that IS3, like some other Dam site-containing IS elements, is regulated by the Dam methylation system. Insertion sites were strongly clustered within the target lambda repressor gene; however no sequence specificity determinants could be identified. All insertions analyzed carried the IS element in the same orientation; target sequence duplications were mostly 3 bp, but in some cases 4 by long. To obtain information about the roles of the open reading frames (ORFs) in IS3, we constructed plasmid-borne mutant elements in which potentially functional reading frames were inactivated by site-directed mutations; the mutants were introduced into partial tandem constructions and tested in cointegration assays. Mutations inactivating the putative initiation codons of ORF I and 11 in the intact element reduced insertion activity to less than 4% of the wild type, whereas the introduction of a termination codon into ORF IV had no effect on cointegration frequency. We conclude that translation of ORFs I and II is essential for cointegration activity and that the mutagenized ATG codons most probably serve as the normal initiation codons in the wild-type element. In contrast, ORF IV could either be non-functional or its gene product could be supplied in trans from chromosomal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号