首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characterization of unfolding of mouse recombinant lipocalin-type prostaglandin D synthase (L-PGDS) by guanidine hydrochloride (GdnHCl) was carried out. In the presence of low concentrations of GdnHCl (up to 0.75 M), enhancement of the enzyme activity was observed. However, above a 1 M concentration of GdnHCl, the enzyme activity was reduced in a concentration-dependent manner. The maximum enzyme activity induced by GdnHCl was approximately 1. 5-fold compared with the activity under physiological conditions without GdnHCl. The ellipticity in circular dichroism (CD) spectrum of the L-PGDS at 218 nm, reflecting the beta-sheet content, was decreased by GdnHCl (up to 0.75 M), and the minimum ellipticity was observed at 0.5 M GdnHCl. The fluorescence quenching of the intrinsic tryptophan of L-PGDS due to the binding of bilirubin in the presence or absence of GdnHCl was measured. The K(d) values obtained in the presence and absence of 0.5 M GdnHCl were 447 and 115 nM, respectively, indicating lower affinity of the L-PGDS for bilirubin with GdnHCl than without it. Further, an NMR study revealed that the reorganization of hydrogen-bond network in the L-PGDS was observed in the presence of 0.5 M GdnHCl. These results, taken together, indicate that the enzyme activity of L-PGDS is enhanced by the conformational change, especially by the change in the secondary structure.  相似文献   

2.
The unfolding of cytoplasmic aspartate aminotransferase from pig heart in solutions of guanidinium chloride (GdnHCl) was studied. Data from protein fluorescence, c.d. and thiol-group reactivity indicated that the enzyme was unfolded in 6 M-GdnHCl. Spectroscopic studies showed that this unfolding was accompanied by dissociation of the pyridoxal 5'-phosphate cofactor. On dilution of the GdnHCl, re-activation of the enzyme occurred in reasonable yield, provided that dithiothreitol and pyridoxal 5'-phosphate were present. The regain of activity obeyed second-order kinetics. In the absence of added dithiothreitol and pyridoxal 5'-phosphate, substantial formation of high-Mr aggregates occurred.  相似文献   

3.
We found that low concentrations of guanidine hydrochloride (GdnHCl, <0.75 M) or urea (<1.5 M) enhanced the enzyme activity of lipocalin-type prostaglandin (PG) D synthase (L-PGDS) maximally 2.5- and 1.6-fold at 0.5 M GdnHCl and 1 M urea, respectively. The catalytic constants in the absence of denaturant and in the presence of 0.5 M GdnHCl or 1 m urea were 22, 57, and 30 min(-1), respectively, and the K(m) values for the substrate, PGH(2), were 2.8, 8.3, and 2.3 microm, respectively, suggesting that the increase in the catalytic constant was mainly responsible for the activation of L-PGDS. The intensity of the circular dichroism (CD) spectrum at 218 nm, reflecting the beta-sheet content, was also increased by either denaturant in a concentration-dependent manner, with the maximum at 0.5 M GdnHCl or 1 M urea. By plotting the enzyme activities against the ellipticities at 218 nm of the CD spectra of L-PGDS in the presence or absence of GdnHCl or urea, we found two states in the reversible folding process of L-PGDS: one is an activity-enhanced state and the other, an inactive state. The NMR analysis of L-PGDS revealed that the hydrogen-bond network was reorganized to be increased in the activity-enhanced state formed in the presence of 0.5 M GdnHCl or 1 m urea and to be decreased but still remain in the inactive intermediate observed in the presence of 2 M GdnHCl or 4 M urea. Furthermore, binding of the nonsubstrate ligands, bilirubin or 13-cis-retinal, to L-PGDS changed from a multistate mode in the native form of L-PGDS to a simple two-state mode in the activity-enhanced form, as monitored by CD spectra of the bound ligands. Therefore, L-PGDS is a unique protein whose enzyme activity and ligand-binding property are biphasically altered during the unfolding process by denaturants.  相似文献   

4.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

5.
Guanidine x HCl (GdnHCl)-induced unfolding of tetrameric N(5)-(L-1-carboxyethyl)-L-ornithine synthase (CEOS; 141,300 M(r)) from Lactococcus lactis at pH 7.2 and 25 degrees C occurred in several phases. The enzyme was inactivated at approximately 1 M GdnHCl. A time-, temperature-, and concentration-dependent formation of soluble protein aggregates occurred at 0.5-1.5 M GdnHCl due to an increased exposure of apolar surfaces. A transition from tetramer to unfolded monomer was observed between 2 and 3.5 M GdnHCl (without observable dimer or trimer intermediates), as evidenced by tyrosyl and tryptophanyl fluorescence changes, sulfhydryl group exposure, loss of secondary structure, size-exclusion chromatography, and sedimentation equilibrium data. GdnHCl-induced dissociation and unfolding of tetrameric CEOS was concerted, and yields of reactivated CEOS by dilution from 5 M GdnHCl were improved when unfolding took place on ice rather than at 25 degrees C. Refolding and reconstitution of the enzyme were optimal at 相似文献   

6.
An unidentified Bacillus licheniformis trehalose-6-phosphate hydrolase (BlTreA) gene was cloned and heterologously expressed in Escherichia coli M15 cells. The over-expressed BlTreA was purified to apparent homogeneity by metal-affinity chromatography and its molecular mass was determined to be approximately 65.9 kDa. The temperature and pH optima for BlTreA were 30 °C and 8.0, respectively. The enzyme hydrolyzed p-nitrophenyl-α-d-glucopyranoside (pNPG) and trehalose-6-phosphate efficiently, but it was inactive toward five other p-nitrophenyl derivatives. Steady-state kinetics with pNPG showed that BlTreA had a K(M) value of 5.2mM and a k(cat) value of 30.2s(-1). Circular dichroism analysis revealed that the secondary structures of BlTreA did not altered by 5-10% acetone and 10-20% ethanol, whereas 5-10% SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.14 M guanidine hydrochloride (GdnHCl) and reached the unfolded intermediates, [GdnHCl](0.5,N-I) and [GdnHCl](0.5,I-U), at 1.02 and 2.24 M, respectively. BlTreA was unfolded completely by 8M urea with [urea](0.5,N-U) of 4.98 M, corresponding to a free energy change of 4.29 kcal/mol for the N→U process. Moreover, the enzyme was unfolded by GdnHCl through a reversible pathway and the refolding reaction exhibited an intermediate state. Taken together, the characterization data provide a foundation for the future structure-function studies of BlTreA, a typical member of glycoside hydrolase family 13.  相似文献   

7.
Equilibrium studies of guanidine hydrochloride (GdnHCl)-induced unfolding of dimeric arginine kinase (AK) from sea cucumber have been performed by monitoring by enzyme activity, intrinsic protein fluorescence, circular dichroism (CD), 1-anilinonaphthalene-8sulfonate (ANS) binding, size-exclusion chromatography and glutaraldehyde cross-linking. The unfolding is a multiphasic process involving at least two dimeric intermediates. The first intermediate, I1, which exists at 0-0.4 M GdnHCl, is a compact inactive dimer lacking partial global structure, while the second dimeric intermediate, I2, formed at 0.5-2.0 M GdnHCl, possesses characteristics similar to the globular folding intermediates described in the literature. The whole unfolding process can be described as follows: (1) inactivation and the appearance of the dimeric intermediate I1; (2) sudden unwinding of I1 to another dimeric intermediate, I2; (3) dissociation of dimeric intermediate I2 to monomers U. The refolding processes initiated by rapid dilution in renaturation buffers indicate that denaturation at low GdnHCl concentrations (below 0.4 M GdnHCl) is reversible and that there seems to be an energy barrier between the two intermediates (0.4-0.5 M GdnHCl), which makes it difficult for AK denatured at high GdnHCl concentrations (above 0.5 M) to reconstitute and regain its catalytic activity completely.  相似文献   

8.
1. The activity of liver phosphorylase b from several mammalian species has been studied. The enzyme from rat or mouse has a higher activity than the rabbit enzyme, which is itself more active than pig liver phosphorylase b. 2 The activity of liver phosphorylase b is influenced by anions and by AMP, and these effects are influenced by pH. Fluoride, which is currently added to the assay mixture of phosphorylase a in crude preparations, is about as active as sulfate as a stimulator of phosphorylase b. 3. When assayed at pH 6.1 and in the presence of 0.15 M NaF, the activity of rat liver phosphorylase b reaches 25% of that of the a enzyme; if 1 mM AMP is also present, this value rises to 50%. 4. Methods are described that allow the determination of liver phosphorylase a without interference of b, and the determination of total phosphorylase (a+b) in rat liver.  相似文献   

9.
Equilibrium unfolding studies of sheep liver tetrameric serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) revealed that the enzyme assumed apparent random coil structure above 3 M guanidine hydrochloride (GdnHCl). In the presence of non-ionic detergent Brij-35 and polyethylene glycol, the 6 M GdnHCI unfolded enzyme could be completely (> 95%) refolded by a 40-fold dilution. The refolded enzyme was fully active and had kinetic constants similar to the native enzyme. The midpoint of inactivation (0.12 M GdnHCl) was well below the midpoint of unfolding (1.6±0.1 M GdnHCl) as monitored by far UV CD at 222 nm. In the presence of PLP, the midpoint of inactivation shifted to a higher concentration of GdnHCl (0.6 M) showing that PLP stabilizes the quaternary structure of the enzyme. However, 50% release of pyridoxal-5′-phosphate (PLP) from the active site occurred at a concentration (0.6 M) higher than the midpoint of inactivation suggesting that GdnHCl may also act as a competitive inhibitor of the enzyme at low concentrations which was confirmed by activity measurements. PLP was not required for the initiation of refolding and inactive tetramers were the end products of refolding which could be converted to active tetramers upon the addition of PLP. Size exclusion chromatography of the apoenzyme showed that the tetramer unfolds via the intermediate formation of dimers. Low concentrations (0.3–0.6 M) of GdnHCl stabilized at least one intermediate which was in slow equilibrium with the dimer. The binding of ANS was maximum at 0.4–0.6 M GdnHCl suggesting that the unfolding intermediate that accumulates at this concentration is less compact than the native enzyme.  相似文献   

10.
Phosphorylase plays an important role in energy generation during muscle contraction. We have demonstrated that purified rabbit skeletal muscle phosphorylase a and phosphorylase b bind to rabbit muscle F-actin, F-actin-tropomyosin, F-actin-tropomyosin-troponin, and myofibrils. Neither phosphorylase a nor phosphorylase b binds to myosin. Phosphorylase a and b bind to F-actin with S0.5 values of 1.5 X 10(-6) and 2.1 X 10(-6) M, respectively. At saturation, 0.035 mol of phosphorylase a and b is bound for every seven G-actin monomers in the F-actin polymer. Using the F-actin-tropomyosin-troponin complex as opposed to F-actin as a binding target, there are five- and threefold increases in the maximal binding capacity for phosphorylase a and phosphorylase b, respectively, without a significant change in the S0.5 value for either form of the enzyme. A similar stoichiometry and affinity of phosphorylase binding are observed when myofibrils are used as the binding target. Ca2+ ions and AMP increase the maximal binding capacity for phosphorylase a to myofibrils while ATP decreases the Bmax. Our study suggests that in skeletal muscle, phosphorylase a and phosphorylase b may interact with the thin filament, and that this binding to thin filament proteins may be controlled by changes in sarcoplasmic concentration of Ca2+ and ligands of phosphorylase during muscle contraction.  相似文献   

11.
States of tryptophyl residues and stability of human matrilysin were studied. The activation energy for the thermal inactivation of matrilysin was determined to be 237 kJ/mol, and 50% of the activity was lost upon incubation at 69 degrees C for 10 min. The activity was increased by adding NaCl, and was doubled with 3 M NaCl. Denaturation of matrilysin by guanidine hydrochloride (GdnHCl) and urea was monitored by fluorescence change of tryptophyl residues. Half of the change was observed at 2.2-2.7 M GdnHCl, whereas no change was observed even with 8 M urea. Half of the inactivation was induced at 0.8 M GndHCl and at 2 M urea. The presence of an inactive intermediate with the same fluorescence spectrum as the native enzyme was suggested in the denaturation. Matrilysin contains four tryptophyls, and their states were examined by fluorescence-quenching with iodide and cesium ions and acrylamide. No tryptophyls in the native enzyme were accessible to I(-) and Cs(+), and 2.4 residues were accessible to acrylamide. Based on the crystallographic study, Trp154 is water-accessible, but it should be in a crevice not to contact with I(-) and Cs(+). All tryptophyls in the GdnHCl-denatured enzyme were exposed to the quenchers, while a considerable part was inaccessible in the urea-denatured one.  相似文献   

12.
In the patients with glycogen storage disease (GSD) type VIa and different serum glucose response to glucagon, the activities of hepatic phosphorylase b kinase, phosphorylase a and b were estimated before and after the intravenous administration of glucagon. 3 min after the administration of glucagon an increase in the activities of phosphorylase b kinase and phosphorylase a was found in liver tissue of all patients except one. These enzymatic activities, however, did not exceed the values of these enzymes in the control liver biopsies without glucagon loading. After the intravenous administration of glucagon an unsuspected increase of phosphorylase b activity was observed in the control liver tissues and in patients with GSD type VIa, except one. In vitro investigations revealed that an increase of hepatic phosphorylase b activity occurs during its conversion to phosphorylase a. We suppose that this phosphorylase b represents a partially phosphorylated form of this enzyme (an intermediate form) that is due to the action of the active phosphorylase b kinase. The correlations between the activities of phosphorylase b kinase, phosphorylase a and an intermediate form of phosphorylase b and hepatic glycogen degradation after administration of glucagon has been discussed.  相似文献   

13.
Polychlorinated biphenyls, polychlorinated biphenylols and polybrominated biphenyls inhibited both rabbit muscle phosphorylase a and phosphorylase b (1,4-alpha-D-glucan:orthophosphate alpha-d-glucosyltransferase, EC 2.4.1.1). The degree of inhibition was dependent upon the relative hydrophobicity of the compounds and steric hinderance. 2,4,5,2',4',5'-Hexabromobiphenyl and Firemaster BP-6 were the most effective inhibitors (Ki, 15 . 10(-6) M). Phosphorylase b was inhibited by compounds of all three groups. 2,4,5,2',4',5'-Hexachlorobiphenyl and 2,4,5,2',4',5'-hexabromobiphenyl did not significantly inhibit phosphorylase a. All of the compounds inhibited phosphorylase a less than phosphorylase b, except 2',3',4',5,5'-pentachloro-2-biphenylol, which was equally effective on each enzyme. Kinetic analysis showed the inhibition was non-competitive and mixed. The results indicate that the compounds bind to hydrophobic site(s) on phosphorylase, access to which is limited by phosphorylation of serine 24.  相似文献   

14.
γ-Glucan phosphorylase (EC 2.4.1.1) activity in homogenates of unfertilized and fertilized sea urchin eggs, Pseudocentrotus depressus and Hemicentrotus pulcherrimus, has been studied.The phosphorylase exhibits a pH optimum at 6.4 and occurs in two forms, AMP-independent and AMP-dependent, the latter showing maximum activity in the presence of 10 mM AMP.By as little as 5 min after insemination a significant increase in the total phosphorylase activity of the egg as well as in the AMP-independent form is demonstrable. The highest specific enzyme activity is consistently found in the supernatant fraction of both the fertilized and the unfertilized egg homogenate. Thus, fertilization does not appear to cause activation of the enzyme by stimulating a change from a particulate-bound to a soluble state.The phosphorylase activity was compared after incubation of homogenates with a variety of agents potentially able to alter the enzyme activity. Combination of suitable amount of cyclic 3′5′-AMP (cAMP) and Ca2+ showed the maximal activating effect on the AMP-independent form of phosphorylase. The fertilization-induced increase of Ca2+ and of cAMP were discussed as possible activators of phosphorylase, and consequently, of carbohydrate metabolism.  相似文献   

15.
Bovine liver glutamate dehydrogenase (GDH), a hexameric enzyme, undergoes subunit dissociation, denaturation, and inactivation in the presence of guanidine hydrochloride (GdnHCl), depending on the denaturant concentration. The correlation between the enzymatic activity and the molecular state of GDH, and the reconstitution of native hexamer from subunits after the removal of GdnHCl were examined by measuring the enzymatic activity and CD spectrum in the far ultraviolet region. It was found that only the hexameric form of GDH has enzymatic activity, and the reconstitution of the hexamer with full enzymatic activity from the trimeric form which has native polypeptide chain structure can be achieved by the removal of GdnHCl. On the other hand, the recovery of enzymatic activity from the dissociated form in more concentrated GdnHCl solution where unfolding of the polypeptide chain takes place showed an exponential decrease with increasing incubation time in the GdnHCl solution. The time constant for the decay of enzymatic activity with respect to the incubation time was almost the same as that for unfolding of the polypeptide chain (followed by CD spectroscopy). It is suggested on the basis of these experimental results that the failure of reconstitution of GDH hexamer from subunits produced at high denaturant concentration is due to failure in the refolding of the unfolded subunit to the correct three-dimensional structure of the polypeptide chain rather than in the reassociation process from subunits.  相似文献   

16.
The unfolding of recombinant human beta-NGF (NGF) in guanidine hydrochloride (GdnHCl) was found to be time dependent with the denaturation midpoint moving to lower GdnHCl concentration over time. Dissociation and extensive unfolding of the NGF dimer occurred rapidly in 5 M GdnHCl, but further unfolding of the molecule occurred over many days at 25 degrees C. Fluorescence spectroscopy, size-exclusion and reversed-phase HPLC, ultra-centrifugation, and proton NMR spectroscopy were used to ascertain that the slow unfolding step was between two denatured monomeric states of NGF (M1 and M2). Proton NMR showed the monomer formed at early times in GdnHCl (M1) had little beta-sheet structure, but retained residual structure in the tryptophan indole and high-field methyl regions of the spectrum. This residual structure was lost after prolonged incubation in GdnHCl giving a more fully unfolded monomer, M2. From kinetic unfolding experiments in 5 M GdnHCl it was determined that the conversion of M1 to M2 had an activation energy of 26.5 kcal/mol, a half-life of 23 h at 25 degrees C, and the rate of formation of M2 was dependent on the GdnHCl concentration between 5 and 7.1 M GdnHCl. These properties of the slow unfolding step are inconsistent with a proline isomerization mechanism. The rate of formation of the slow folding monomer M2 increases with truncation of five and nine amino acids from the NGF N-terminus. A model for the slow unfolding reaction is proposed where the N-terminus threads through the cystine knot to form M2, a loop-threading reaction, increasing the conformational freedom of the denatured state.  相似文献   

17.
Equilibrium denaturation of streptomycin adenylyltransferase (SMATase) has been studied by CD spectroscopy, fluorescence emission spectroscopy, and binding of the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show retention of 90% native-like secondary structure at 0.5 M guanidine hydrochloride (GdnHCl). The mean residue ellipticities at 222 nm and enzyme activity plotted against GdnHCl concentration showed loss of about 50 and 75% of secondary structure and 35 and 60% of activity at 0.75 and 1.5 M GdnHCl, respectively. At 6 M GdnHCl, there was loss of secondary structure and activity leading to the formation of GdnHCl-induced unfolded state as evidenced by CD and fluorescence spectroscopy as well as by measuring enzymatic activity. The denaturant-mediated decrease in fluorescence intensity and 5 nm red shift of λmax point to gradual unfolding of SMATase when GdnHCl is added up from 0.5 M to a maximum of 6 M. Decreasing of ANS binding and red shift (∼5 nm) were observed in this state compared to the native folded state, indicating the partial destruction of surface hydrophobic patches of the protein molecule on denaturation. Disruption of disulfide bonds in the protein resulted in sharp decrease in surface hydrophobicity of the protein, indicating that the surface hydrophobic patches are held by disulfide bonds even in the GdnHCl denatured state. Acrylamide and potassium iodide quenching of the intrinsic tryptophan fluorescence of SMATase showed that the native protein is in folded conformation with majority of the tryptophan residues exposed to the solvent, and about 20% of them are in negatively charged environment. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 11, pp. 1514–1523.  相似文献   

18.
1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  相似文献   

19.
The binding of phosphorylase kinase to thin filaments and their effects on the enzyme activity as well as the contribution of the enzyme to contractile protein phosphorylation have been studied. The data obtained suggest that the kinase binding to thin filaments is controlled by the regulatory proteins, troponin and tropomyosin. The bulk of the enzyme is bound to the F-actin-tropomyosin-troponin complex which activates the enzyme in a far greater degree than each of its constituent components. Ca2+ and ATP control the kinase binding to F-actin. ATP increases the enzyme binding 6-fold; Ca2+ decrease the S0.5 value for F-actin 5-fold. In acetone powder extracts phosphorylase kinase phosphorylates thin filament-bound phosphorylase b, troponin T and troponin I as well as 51-58 kDa and 114 kDa proteins. These results suggest that phosphorylase kinase plays a role in the mechanism of synchronization of glycogenolysis and muscle contraction rates.  相似文献   

20.
The activities of phosphorylase b kinase and phosphorylase a phosphatase were determined during the phases of KCl-induced contraction in porcine carotid artery. Phosphorylase b kinase exhibited a biphasic pattern with activity increasing 70% above basal levels during the early phase of active force generation (45 s into contraction) followed by a decline in activity during the phase of steady-state tension maintenance. Phosphorylase a phosphatase was stimulated simultaneously with phosphorylase b kinase, with activity increasing 100% over basal levels at 45 s into contraction, but remaining elevated at 30 min. Incubation of arteries in 0.5 mM palmitate resulted in a 30% increase in basal activity of phosphorylase b kinase and 117% augmentation of basal phosphatase activity, with no further increase in activity of either enzyme with contraction. The results indicate that both the kinase and phosphatase are subject to regulation during contractile activation of the muscle, possibly by similar but not identical mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号