共查询到20条相似文献,搜索用时 9 毫秒
1.
Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis 总被引:11,自引:0,他引:11
Chen G Li J Qiang X Czura CJ Ochani M Ochani K Ulloa L Yang H Tracey KJ Wang P Sama AE Wang H 《Journal of lipid research》2005,46(4):623-627
Stearoyl lysophosphatidylcholine (LPC) has recently been proven protective against lethal sepsis by stimulating neutrophils to eliminate invading pathogens through an H2O2-dependent mechanism. Here, we demonstrate that stearoyl LPC, but not caproyl LPC, significantly attenuates circulating high-mobility group box 1 (HMGB1) levels in endotoxemia and sepsis by suppressing endotoxin-induced HMGB1 release from macrophages/monocytes. Neutralizing antibodies against G2A, a potential cell surface receptor for LPC, partially abrogated stearoyl LPC-mediated suppression of HMGB1 release. Thus, stearoyl LPC confers protection against lethal experimental sepsis partly by facilitating the elimination of the invading pathogens and partly by inhibiting endotoxin-induced release of a late proinflammatory cytokine, HMGB1. 相似文献
2.
Kun Yang Min Fan Xiaohui Wang Jingjing Xu Yana Wang Fei Tu P. Spencer Gill Tuanzhu Ha Li Liu David L. Williams Chuanfu Li 《Cell death and differentiation》2022,29(1):133
High circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and β-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.Subject terms: Infectious diseases, Signal transduction, Epigenetics 相似文献
3.
血管内皮细胞激活是脓毒症病理生理过程的中心环节。活化的血管内皮细胞为炎症介质的聚集和迁移提供了重要的场所,是放大炎症反应的前提条件。高迁移率族蛋白1(high-mobility group box protein1,HMGB1)是脓毒症晚期致死性的促炎介质,维持并延长了脓毒症病理过程。HMGBl通过晚期糖基化终产物受体(advanced glycation end products receptor,RAGE)对血管内皮细胞有重要的激活作用。 相似文献
4.
HMGB1 expression and release by bone cells 总被引:5,自引:0,他引:5
Charoonpatrapong K Shah R Robling AG Alvarez M Clapp DW Chen S Kopp RP Pavalko FM Yu J Bidwell JP 《Journal of cellular physiology》2006,207(2):480-490
Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone. 相似文献
5.
《Autophagy》2013,9(2):247-249
The characteristics of tumor cell killing by an anti-cancer agent can determine the long-term effectiveness of the treatment. For example, if dying tumor cells release the immune modulator HMGB1 after treatment with anti-cancer drugs, they can activate a tumor-specific immune response that boosts the effectiveness of the initial treatment. Recent work from our group examined the mechanism of action of a targeted toxin called DT-EGF that selectively kills Epidermal Growth Factor Receptor-expressing tumor cells. We found that DT-EGF kills glioblastoma cells by a caspase-independent mechanism that involves high levels of autophagy, which inhibits cell death by blocking apoptosis. In contrast, DT-EGF kills epithelial tumor cells by caspase-dependent apoptosis and in these cells autophagy is not induced. These differences allowed us to discover that the different death mechanisms were associated with differences in the release of HMGB1 and that autophagy induction is required and sufficient to cause release of HMGB1 from the dying cells. These data identify a new function for autophagy during cell death and open up the possibility of manipulating autophagy during cancer treatment as a way to influence the immunogenicity of dying tumor cells. 相似文献
6.
High mobility group box 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. During infection or injury, activated immune cells and damaged cells release HMGB1 into the extracellular space, where HMGB1 functions as a proinflammatory mediator and contributes importantly to the pathogenesis of infl ammatory diseases. Recent studies reveal that inflammasomes, intracellular protein complexes, critically regulate HMGB1 release from activated immune cells in response to a variety of exogenous and endogenous danger signals. Double stranded RNA dependent kinase (PKR), an intracellular danger-sensing molecule, physically interacts with inflammasome components and is important for inflammasome activation and HMGB1 release. Together, these studies not only unravel novel mechanisms of HMGB1 release during infl ammation, but also provide potential therapeutic targets to treat HMGB1-related infl ammatory diseases. 相似文献
7.
Huston JM Wang H Ochani M Ochani K Rosas-Ballina M Gallowitsch-Puerta M Ashok M Yang L Tracey KJ Yang H 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(5):3535-3539
High mobility group box 1 (HMGB1) is a critical mediator of lethal sepsis. Previously, we showed that apoptotic cells can activate macrophages to release HMGB1. During sepsis, apoptosis occurs primarily in lymphoid organs, including the spleen and thymus. Currently, it is unclear whether this accelerated lymphoid organ apoptosis contributes to systemic release of HMGB1 in sepsis. In this study, we report that splenectomy significantly reduces systemic HMGB1 release and improves survival in mice with polymicrobial sepsis. Treatment with a broad-spectrum caspase inhibitor reduces systemic lymphocyte apoptosis, suppresses circulating HMGB1 concentrations, and improves survival during polymicrobial sepsis, but fails to protect septic mice following splenectomy. These findings indicate that apoptosis in the spleen is essential to the pathogenesis of HMGB1-mediated sepsis lethality. 相似文献
8.
Kiyoshi Kikuchi Ko-ichi Kawahara Kamal Krishna Biswas Salunya Tancharoen Fumiyo Matsuda Kazunori Takenouchi Noboru Arimura Xiaojie Meng Shinichiro Arimura Kentaro Mera Yoshiko Ohno Yoshihiro Yoshida Hisaaki Uchikado Kenji Nakayama Teruto Hashiguchi 《Biochemical and biophysical research communications》2009,385(2):132-136
High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction. 相似文献
9.
Yuan Z Chen J Zhang Y Peng Y 《Biochemical and biophysical research communications》2008,372(4):703-707
Recent studies indicate that the High Mobility Group Box-1 protein (HMGB1) acts as a potent proinflammatory cytokine that contributes to the pathogenesis of diverse inflammatory and infectious disorders. The proinflammatory cytokine activity of HMGB1 has become a therapeutic target. In this study, we cloned the cDNA encoding human HMGB1 and constructed HMGB1 mutants using a one-step opposite direction PCR. The binding of the HMGB1 mutants to THP-1 cell and the cytokine activities of these HMGB1 mutants were observed. Results showed that the HMGB1 Mut (102-105), one of the HMGB1 mutants, in which amino acids 102-105 (FFLF) were replaced with two Glys, significantly decreased the full-length HMGB1 protein induced TNF-α release in human monocyte cultures. The results indicate that we have developed a novel recombinant HMGB1 mutant that competitively antagonizes the proinflammatory activity of HMGB1. This may be of significant importance in providing a new anti-inflammatory strategy for the treatment of severe sepsis and other inflammatory disorders. 相似文献
10.
11.
Opioid agonists specific for the , , and opioid receptor subtypes were tested for their ability to modulate potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity from guinea pig hippocampal mossy fiber synaptosomes. The opioid agonists U-62,066E and (–) ethylketocyclazocine, but not the agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAGO) nor the agonist [D-Pen2,5]enkephalin (DPDE), inhibited the potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity. U-62,066E, but not DAGO or DPDE, also inhibited the potassium-evoked rise in mossy fiber synaptosomal cytosolic Ca2+ levels, indicating a possible mechanism for agonist inhibition of transmitter release. DAGO and DPDE were found to be without any effect on cytosolic Ca2+ levels or transmitter release in this preparation. The U-62,066E inhibition of the potassium-evoked rise in synaptosomal cytosolic Ca2+ levels was partially attenuated by the opioid antagonist quadazocine and insensitive to the -opioid specific antagonist ICI 174,864 and the opioid-preferring antagonists naloxone and naltrexone. Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These results suggest that opioid agonists inhibit transmitter release from mossy fiber terminals through both opioid and non- opioid receptor mediated mechanisms. 相似文献
12.
Chorny A Anderson P Gonzalez-Rey E Delgado M 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(12):8369-8377
Sepsis, a life-threatening complication of infections and the most common cause of death in intensive care units, is characterized by a hyperactive and out-of-balance network of endogenous proinflammatory cytokines. None of the current therapies are entirely effective, illustrating the need for novel therapeutic approaches. Ghrelin (GHR) is an orexigenic peptide that has emerged as a potential endogenous anti-inflammatory factor. In this study, we show that the delayed administration of GHR protects against the mortality in various models of established endotoxemia and sepsis. The therapeutic effect of GHR is mainly mediated by decreasing the secretion of the high mobility box 1 (HMGB1), a DNA-binding factor that acts as a late inflammatory factor critical for sepsis progression. Macrophages seem to be the major cell targets in the inhibition of HMGB1 secretion, in which GHR blocked its cytoplasmic translocation. Interestingly, we also report that GHR shows a potent antibacterial activity in septic mice and in vitro. Remarkably, GHR also reduces the severity of experimental arthritis and the release of HMGB1 to serum. Therefore, by regulating crucial processes of sepsis, such as the production of early and late inflammatory mediators by macrophages and the microbial load, GHR represents a feasible therapeutic agent for this disease and other inflammatory disorders. 相似文献
13.
Xiangyu Wang Zhaozheng Li Yang Bai Rui Zhang Ran Meng Fangping Chen Haichao Wang Timothy R. Billiar Xianzhong Xiao Ben Lu Yiting Tang 《Cell death & disease》2021,12(4)
Caspase-11, a cytosolic lipopolysaccharide (LPS) receptor, mediates lethal immune responses and coagulopathy in sepsis, a leading cause of death worldwide with limited therapeutic options. We previously showed that over-activation of caspase-11 is driven by hepatocyte-released high mobility group box 1 (HMGB1), which delivers extracellular LPS into the cytosol of host cells during sepsis. Using a phenotypic screening strategy with recombinant HMGB1 and peritoneal macrophages, we discovered that FeTPPS, a small molecule selectively inhibits HMGB1-mediated caspase-11 activation. The physical interaction between FeTPPS and HMGB1 disrupts the HMGB1-LPS binding and decreases the capacity of HMGB1 to induce lysosomal rupture, leading to the diminished cytosolic delivery of LPS. Treatment of FeTPPS significantly attenuates HMGB1- and caspase-11-mediated immune responses, organ damage, and lethality in endotoxemia and bacterial sepsis. These findings shed light on the development of HMGB1-targeting therapeutics for lethal immune disorders and might open a new avenue to treat sepsis.Subject terms: Cell death and immune response, Sepsis 相似文献
14.
15.
The extracellular release of HMGB1 during apoptotic cell death 总被引:9,自引:0,他引:9
Bell CW Jiang W Reich CF Pisetsky DS 《American journal of physiology. Cell physiology》2006,291(6):C1318-C1325
16.
《Autophagy》2013,9(8):1181-1183
Metabolic and therapeutic stress activates several signal transduction pathways and releases damageassociated molecular pattern molecules (DAMPs) that regulate cell death and cell survival. The prototypical DAMP, high-mobility group box 1 protein (HMGB1) is released with sustained autophagy, late apoptosis and necrosis. Our recent findings reveal that the HMGB1 protein triggers autophagy or apoptosis in cancer cells, depending on its redox status. Reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE), induces Beclin 1-dependent autophagy and promotes pancreatic or colon tumor cell line resistance to chemotherapeutic agents or ionizing radiation. In contrast, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis via the mitochondrial pathway. This suggests a new function for HMGB1 within the tumor microenvironment, regulating cell death and survival and suggests that it plays an important functional role in cross-regulating apoptosis and autophagy. 相似文献
17.
Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis 总被引:2,自引:0,他引:2
Goldstein RS Bruchfeld A Yang L Qureshi AR Gallowitsch-Puerta M Patel NB Huston BJ Chavan S Rosas-Ballina M Gregersen PK Czura CJ Sloan RP Sama AE Tracey KJ 《Molecular medicine (Cambridge, Mass.)》2007,13(3-4):210-215
High Mobility Group Box-1 (HMGB1) is a cytokine implicated in the pathogenesis of rheumatoid arthritis (RA) and other inflammatory diseases. The cholinergic anti-inflammatory pathway, a vagus nerve-dependent mechanism, inhibits HMGB1 release in experimental disease models. Here, we examine the relationship between vagus nerve activity and HMGB1 in patients with RA. We compared RR interval variability, an index of cardiac vagal modulation, HMGB1 and hsCRP serum levels, and disease activity scores in thirteen RA patients and eleven age- and sex-matched controls. In RA patients, serum levels of HMGB1 and hsCRP were elevated as compared with controls (HMGB1=71 ng/mL [45-99] vs. 18 ng/mL [0-40], P<0.0001; hsCRP=14.5 mg/L [0.7-59] vs. 1 mg/L [0.4-2.9], P<0.001). RR interval variability in RA patients was significantly decreased as compared with controls (HF=38 msec2 [14-80] vs. 288 msec2 [38-364], P<0.0001; rMSSD=20.9+/-9.79 msec, 52.6+/-35.3 msec, P<0.01). HMGB1 levels and RR interval variability were significantly related (rho=-0.49, P<0.01). HMGB1 serum levels significantly correlated with disease activity scores (DAS-28) in patients with RA (P=0.004). The study design does not enable a determination of causality, but the results are consistent with the hypothesis that decreased cholinergic anti-inflammatory pathway activity is associated with increased HMGB1 levels in patients with RA. 相似文献
18.
19.
Cholinergic agonists stimulate calcium uptake and cGMP formation in human erythrocytes 总被引:1,自引:0,他引:1
Human erythrocytes possess a muscarinic cholinergic receptor sensitive to cholinergic agonists which stimulate transient increases in calcium uptake and subsequent cyclic GMP formation. These phenomena can be blocked by atropine and EGTA. The cholinergic stimulation of cyclic GMP formation depends on Ca2+ uptake from external media. The effects of cholinergic agonists on the erythrocyte resemble their effect on calcium channels in nervous tissue. The cholinergic stimulation of Ca2+ uptake in erythrocytes may affect the calcium-sensitive mechanism involved in the shape, permeability and rigidity of these cells. 相似文献
20.
Rabadi MM Kuo MC Ghaly T Rabadi SM Weber M Goligorsky MS Ratliff BB 《American journal of physiology. Renal physiology》2012,302(6):F730-F741
We aimed to investigate the potential relationship between alarmins [acting via Toll-like receptor-4 (TLR4)], uric acid (UA), and high-mobility group box-1 protein (HMGB1) during acute kidney injury. UA, which is significantly increased in the circulation following renal ischemia-reperfusion injury (IRI), was used both in vitro and in vivo as an early response-signaling molecule to determine its ability to induce the secretion of HMGB1 from endothelial cells. Treatment of human umbilical vein endothelial cells (HUVEC) with UA resulted in increased HMGB1 mRNA expression, acetylation of nuclear HMGB1, and its subsequent nuclear-cytoplasmic translocation and release into the circulation, as determined by Western blotting and immunofluorescence. Treatment of HUVEC with UA and a calcium mobilization inhibitor (TMB-8) or a MEK/Erk pathway inhibitor (U0126) prevented translocation of HMGB1 from the nucleus, resulting in reduced cytoplasmic and circulating levels of HMGB1. Once released, HMGB1 in autocrine fashion promoted further HMGB1 release while also stimulating NF-κB activity and increased angiopoietin-2 expression and protein release. Transfection of HUVEC with TLR4 small interfering (si) RNA reduced HMGB1 levels during UA and HMGB1 treatment. In summary, UA after IRI mediates the acetylation and release of HMGB1 from endothelial cells by mechanisms that involve calcium mobilization, the MEK/Erk pathway, and activation of TLR4. Once released, HMGB1 promotes its own further cellular release while acting as an autocrine and paracrine to activate both proinflammatory and proreparative mediators. 相似文献