首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The biological effects of irradiation with12C+5 ion beam on plant cells have been analyzed. Protoplasts and cell suspensions ofLavatera thuringiaca, and a somatic hybrid callus (Hibiscus rosa-sinensis +Lavatera thuringiaca), were irradiated with doses from 0.05 to 50 Gy, and the effects on cell growth, cell division, cell viability and embryogenesis rates were analyzed. Irradiation with12C+5 ion beam at relatively very low doses (5.0 Gy) significantly inhibited cell division, yet the survival rate and regeneration capability of the cells through somatic embryogenesis were conserved in more than 70 and 50 %, respectively. These results indicate that cell division is the most sensitive parameter to irradiation, accounting for the inhibition of colony formation and callus growth. The potential use of the12C+5 ion beam in asymmetric protoplast fusion experiments is discussed.  相似文献   

2.
 A system for barley transformation via polyethyleneglycol-mediated DNA uptake into protoplasts isolated directly from scutella and the regeneration of transgenic plants is reported. Scutellum protoplasts (cv. Clipper, an Australian malting cultivar) were co-transformed with plasmids Act 1-DGUS, containing the marker uidA gene, and pCaIneo, which contains the selectable marker neomycin phosphotransferase gene. Protoplast-derived calluses were selected on medium containing the antibiotic G418 (25 and 15 mg.l–1) and macroscopic antibiotic resistant colonies were recovered. Fertile plants were regenerated from a callus line and molecular analysis confirmed transgene integration. Received: 11 October 1999 / Revision received: 11 February 2000 / Accepted: 11 February 2000  相似文献   

3.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

4.
The plant regeneration ability of zygotic embryo-derived callus cultures was studied for 12 A. cepa varieties and accessions, two A. fistulosum varieties, one A. fistulosum x A. cepa interspecific hybrid and two A. porrum varieties. Compact embryogenic callus was induced on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid. The embryogenic calluses of all three Allium species were similar in appearance. For all accessions tested plants could be regenerated at a high frequency from this compact callus through somatic embryogenesis, when using kinetin supplemented MS medium (regeneration medium). Addition of abscisic acid to the regeneration medium stimulated the formation of both somatic embryos and shoots for a number of varieties. Concerning shoot regeneration from callus cultures, significant differences existed between genotypes of all accessions except one.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - VDH Van Der Have Seed company  相似文献   

5.
Summary Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.  相似文献   

6.
Summary In researching the application of genetic transformation to lily breeding, callus formation from cultured explants and plant regeneration from induced calluses were examined in 33 Lilium genotypes, 21 species, three Asiatic hybrids, two LA hybrids, two Longiflorum hybrids, three Oriental hybrids, and two Trumpet hybrids. Seed, bulb scale, leaf, or filament explants were placed on a medium containing 4.1 μM 4-amino-3,5,6-trichloropicolinic acid (picloram; PIC) and cultured in the dark. After 2 mo., callus formation was observed in 30 genotypes, and a formation frequency of more than 50% was obtained in 24 genotypes. Bulb scale and filament explants showed great ability to form calluses, whereas seeds had poor ability. Most of the induced calluses were yellow and had a nodular appearance. When subcultured onto the same fresh medium, twofold or more increases in callus mass were obtained in 1 mo. for 15 genotypes. Callus lines showing sustained growth 1 yr after the initiation of subculture were examined for their ability to produce shoots on a medium without plant growth regulators (PGRs) and a medium containing 22 μM 6-benzyladenine (BA). Shoot regeneration was observed in all genotypes examined, and a regeneration frequency of over 80% was obtained in 20 genotypes. Initial explants used for callus induction and callus type (nodular or friable) had no effect on shoot regeneration. Most of the regenerated shoots developed into complete plantlets following their transfer to a PGR-free medium.  相似文献   

7.
The calluses of two hydroxyproline-resistant lines (D20-1 and D30-1) of Solanum tuberosum L. were transferred to a solidified MS medium containing 1.0 mg/I IAA, 2.0 mg/l zeatin, 40.0 mg/l adenine sulphate, 1 g/l casein hydrolysate, 20 g/l sucrose and 10 g/l agar for plant regeneration. The shoot regeneration was only achieved from the callus of line D20–1. Regenerated shoots exhibited morphological variability. The degrees of frost tolerance were higher in the leaves of the regenerated plants compared with the leaves of the non-selected control plants, but lower than that of the callus from which they were regenerated.  相似文献   

8.
Callus cultures derived from leaf segments of chrysanthemum cultivar ‘Snow Ball’ which was susceptible to Septoria obesa were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant cell lines were selected by culturing callus on growth medium containing various concentrations of S. obesa filtrate. Resistant calluses obtained after two cycles (30 d each cycle) of selection were used for plant regeneration. About 30% of the plants regenerated from the resistant calluses and 70–80% of the plants raised from cuttings had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

9.
Summary Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.  相似文献   

10.
Calluses initiated from leaves and seedlings of the mangrove,Bruguiera sexangula, were isolated from the original tissues and subcultured. Effects of NaCl on growth and ion content of each callus were measured. The growth rate of calluses derived from leaves (leaf callus) gradually decreased as the NaCl concentration in the medium increased, while that of calluses derived from seedlings (seedling callus) was highest in the medium containing 100 mM NaCl. Concentrations of Na and Cl in both calluses increased with increasing the NaCl concentration in the culture medium. The concentration of K of leaf calluses greatly decreased at 300 mM NaCl, while the K concentration of seedling calluses decreased only slightly and remained relatively high even in the presence of 300 mM NaCl. Transient treatment of leaf calluses with media containing high concentrations of NaCl frequently induced regeneration of adventitious tissues.  相似文献   

11.
D. Li  W. Shi  X. Deng 《Plant cell reports》2002,21(2):153-156
Ponkan (Citrus reticulata Blanco), one of the most important commercial cultivars of mandarin, is very seedy. In this study, the chimeric ribonuclease gene (barnase) driven by an anther tapetum-specific promoter (pTA29) was introduced into embryogenic callus of Ponkan by Agrobacterium-mediated transformation using the bar gene as a selectable marker. In contrast to previous reports, embryogenic calluses were used as the explant for Agrobacterium infection and transgenic plant regeneration. Selection of transformed callus was accomplished using basta. After 3 days of co-culture, calluses were transferred to MT medium with 50 mg/l basta and 400 mg/l cefotaxime. Resistant calluses were recovered and proliferated after three to four subcultures and then regenerated plantlets. A total of 52 resistant plants were recovered, of which 43 were verified to be transformants by polymerase chain reaction amplification of a fragment of the transgene. Southern hybridization of seven randomly selected transformed plants further confirmed their transgenic nature. The potential of this strategy for breeding citrus seedless types is discussed.  相似文献   

12.
Summary Somatic hybrid plants regenerated following the fusion of leaf mesophyll protoplasts of Petunia parodii with those isolated from a cell suspension of albino P. inflata. These two species exhibit a unilateral cross-incompatability with a pre-zygotic mode of reproductive isolation preventing hybridizations with P. inflata as the maternal parent. Selection of somatic hybrids relied on the fact that unfused or homokaryon protoplasts of P. parodii did not develop beyond the cell colony stage while those of the putative somatic hybrids and albino P. inflata parent produced callus. Green somatic hybrid calluses were readily identified against the white background of P. inflata following complementation to chlorophyll synthesis proficiency and continued growth in hybrid cells. Shoots, and ultimately flowering plants, were identified as somatic hybrids based on their floral morphology and colour, chromosome number and the fact that they segregated for parental characters. The frequency of somatic hybrid production was comparable to that previously established for two sexually compatible Petunia species.  相似文献   

13.
Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested.  相似文献   

14.
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of Rhipsalidopsis cv. CB5 was developed. Calluses derived from phylloclade explants and sub-cultured onto fresh callus induction medium over a period of 9–12 months were co-cultivated with A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable marker, and the reporter uidA gene were used. Transformed Rhipsalidopsis calluses with a vigorous growth phenotype were obtained by extended culture on media containing 600 mg l−1 kanamycin. After 9 months of a stringent selection pressure, the removal of kanamycin from the final medium together with the culture of the transformed calluses under nutritional stress led to the formation of several transgenic adventitious shoots. Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and Southern blot hybridization (for the nptII gene). With this approach, a transformation efficiency of 22.7% was achieved. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for this cactus species.  相似文献   

15.
Mature seed‐derived callus from an elite Chinese japonica rice cv. Eyl 105 was transformed with a plasmid containing the selectable marker hygromycin phosphotransferase (hpt) and the reporter β‐glucuronidase (gusA) genes via particle bombardment. After two rounds of selection on hygromycin (30 mg/l)‐containing medium, resistant callus was transferred to hygromycin (30 mg/l)‐containing regeneration medium for plant regeneration. Twenty‐three independent transgenic rice plants were regenerated from 127 bombarded callus with a transformation frequency of 18.1%. All the transgenic plants contained both gusA and hpt genes, revealed by PCR/Southern blot analysis. GUS assay revealed 18 out of 23 plants (78.3%) proliferated on hygromycin‐containing medium had GUS expression at various levels. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parent plants showing 3:1 Mendelian segregation, we identified three independent homozygous transgenic rice lines. The homozygous lines were phenotypically normal and fertile compared to the control plants. We demonstrate that homozygous transgenic rice lines can be obtained via particle bombardment‐mediated transformation and through genetic analysis‐based selection.  相似文献   

16.
Summary The effect of cytokinin on growth and plant regeneration of thalamus-derived calluses ofRanunculus asiaticus L. has been investigated with various concentrations of 6-benzyladenine and 6-furfurylaminopurine (kinetin), in a medium containing 2,4-dichlorophenoxyacetic acid levels, which was decreased to 0 over three subcultures. Cytokinins, although not essential, for initiating callus production, improved subsequent callus growth and plant regeneration. No somatic embryogenesis was observed on calluses grown on media lacking cytokinins or containing only kinetin. Calluses manifested embryogenesis on media containing 6-benzyladenie plus kinetin or only 6-benzyladenine. Nondifferentiating callus was characterized by a high content of phenolic polymers and an elevated peroxidase and polyphenol oxidase activity in comparison with differentiating callus. Differences in simple phenol concentrations were observed in the two kinds of callus.  相似文献   

17.
发根农杆菌LBA9402Bin19转化红豆草及再生转基因植株   总被引:1,自引:0,他引:1  
Hypocotyl segments of Onobrychis viciaefolia were transformed by Agrobacterium rhizogenes LBA9402 which harboured pBin19 and pRi1855. Seedling age and preculture time of hypocotyl segments influenced the transformation frequency. Paper electrophoresis revealed that 70% of single hairy root cultures could synthesize agropine. Calli were induced from hairy root segments on MS medium containing 0-9.05 mumol/L 2,4-D and 0-2.22 mumol/L 6-BA at first, then they were transferred onto MS0 medium without kanamycin for regeneration. Constitution and concentration of phytohormones in callus induction media affected subsequent regeneration of calluses on MS0 medium remarkably. Regeneration frequency and shoot number per callus declined when 2,4-D concentration in callus induction media increased from 4.52 to 9.05 mumol/L, while they ascended when 6-BA in callus induction media increased from 0 to 2.22 mumol/L. On MS medium supplemented with 4.52 mumol/L 2,4-D and 2.22 mumol/L 6-BA, only 14.2% hairy root segments could produce calluses, but the regeneration frequency reached 58.1% and the shoot number per callus was 37.2. In 32 analysed plants regenerated from 8 kanamycin resistant hairy root lines, 25 were nptII positive and showed different copy numbers.  相似文献   

18.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

19.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

20.
Plants were regenerated from mesophyll protoplasts of Ipomoea cairica L., a wild relative of sweetpotato (Ipomoea batatas (L.) Lam.), and somatic hybrids between I. cairica L. and sweetpotato cv. Xushu 18 were obtained by PEG-mediated method. I. cairica L. protoplasts were isolated from the leaves of in vitro grown plants and cultured in a modified MS medium containing 0.05 mg l−1 2,4-D and 0.5 mg l−1 kinetin. Nine weeks after plating, the obtained small calluses up to about 2 mm in diameter were transferred to solid MS medium supplemented with 0.05 mg l−1 2,4-D and 0.5 mg l−1 kinetin for callus proliferation. Three weeks after transfer, the calluses were transferred to MS medium supplemented with 0–1.0 mg l−1 IAA and 1.0–3.0 mg l−1 BAP and further to hormone-free MS medium for plant regeneration. The frequencies of calluses forming plants ranged from 6.0% to 41.3% based on the different concentrations of IAA and BAP, and 2.0 mg l−1 BAP gave the highest regeneration frequency of protoplast-derived calluses in I. cairica L.. The regenerated plants, when transferred to soil, showed 100% survival. No morphological variations were observed. Mesophyll protoplasts of I. cairica L. were fused with protoplasts isolated from embryogenic suspension cultures of Xushu 18 by PEG-mediated method. The fused products were cultured with the best protoplast culture system of I. cairica L.. Finally, 114 plants were produced from 63 of the 182 calluses derived from the fused protoplasts, and 46 plants of them were confirmed to be somatic hybrids through peroxidase isozyme, RAPD, morphological and cytological analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号