首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We have found that a chicken egg lysozyme derivative (beta-101-lysozyme) containing an L-isoaspartyl residue at position 101 has a Km for methylation by the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase (EC 2.1.1.77) of 183 microM, about 30 times higher than that expected from previous studies with isoaspartyl-containing peptides. In the course of investigating the reasons for this poor enzyme recognition, we found that charged residues on the carboxyl side of isoaspartyl residues had a large effect on the affinity of the enzyme for synthetic peptides. This is best illustrated by the lysozyme-related peptide YVSisoDGDG, which has a Km for methylation of 469 microM. When the penultimate aspartyl residue is replaced by a cysteinyl residue, the Km drops to 4.6 microM, comparable to other peptides of similar size. Furthermore, replacing it with a cysteic acid residue results in a Km of 104 microM, suggesting that a negative charge at this position may lead to a weaker affinity of the peptide substrate for the methyltransferase. Assays with additional synthetic peptides indicate that moving the negative charge to the first or third residue on the carboxyl side of the isoaspartyl residue has a similar but less severe effect in reducing its affinity for the methyltransferase. Enzymatic methylation has recently been proposed to be the first step in the conversion of abnormal isoaspartyl residues to aspartyl residues. The results reported here, however, along with previous evidence that protein tertiary structure can inhibit isoaspartyl methylation, suggest that only a subclass of damaged sites are capable of efficiently entering a putative repair pathway; the sites not recognized by the methyltransferase may accumulate in vivo.  相似文献   

2.
Rabbit liver cytosolic serine hydroxymethyltransferase exists in several subforms which have different isoelectric points. Incubation of the purified enzyme with chymotrypsin cleaves the enzyme at Trp14. The released amino-terminal 14-mer peptide was shown to exist in three forms of equal concentration. The peptides differ in structure only at the asparaginyl residue at position 5. In addition to asparagine at this position we found both aspartyl and isoaspartyl residues. The deamidation of Asn5 does not appear to occur during the purification of the enzyme. The in vitro rate of deamidation of Asn5 in the enzyme is more than 5-fold slower than the rate of deamidation of this residue in the free 14-mer peptide. The isoaspartyl residue at position 5 serves as a substrate for protein carboxyl methyltransferase both in the free 14-mer peptide and the native enzyme. The enzyme which has had the amino-terminal 14 residues removed by digestion with chymotrypsin still exists in several forms with different isoelectric points. Reaction of peptides from this enzyme with carboxyl methyltransferase suggests that there is at least one more asparaginyl residue in this enzyme other than Asn5 which has undergone deamidation with the formation of isoaspartyl bonds.  相似文献   

3.
We have investigated the formation of D-aspartyl and L-isoaspartyl (beta-aspartyl) residues and their subsequent methylation in bovine brain calmodulin by the type II protein carboxyl methyltransferase. Based on the results of studies with unstructured peptides and denatured proteins, it has been proposed that the major sites of carboxyl methylation in calmodulin are at L-isoaspartyl residues that originate from two Asn-Gly sequences. To test this hypothesis, we directly identified the sites of methylation in affinity-purified preparations of calmodulin by peptide mapping using the proteases trypsin, endoproteinase Lys-C, clostripain, chymotrypsin, and Staphylococcus aureus V8 protease. We found, however, that the major high-affinity sites of methylation originate from aspartyl residues at position 2 and at positions 78 and/or 80. The methylatable residue in the first case was shown to be L-isoaspartate by comparison of the properties of a synthetic peptide corresponding to the N-terminal 13 residues substituted with an L-iso-Asp residue at position 2. The second methylatable residue, probably derived from Asp78, also appears to be an L-isoaspartyl residue. These sites appear to be readily accessible to the methyltransferase and are present in relatively flexible regions of calmodulin that may allow the spontaneous degradation reactions to occur that generate L-isoaspartyl residues via succinimide intermediates. Interestingly, the four calcium binding regions, each containing 3-4 aspartyl and asparaginyl residues (including the two Asn-Gly sequences), do not appear to contribute to the high-affinity methyl acceptor sites, even when calcium is removed prior to the methylation reaction. We propose that methylatable residues do not form at these sites because of the inflexibility of these regions when calcium is bound.  相似文献   

4.
Spontaneous isoaspartyl formation from aspartyl dehydration or asparaginyl deamidation is a major source of modifications in protein structures. In cells, these conformational changes could be reverted by the protein L-isoaspartyl methyltransferase (PIMT) repair enzyme that converts the isoaspartyl residues into aspartyl. The physiological importance of this metabolism has been recently illustrated in plants. Recent developments allowing peptide isomer identification and quantification at the proteome scale are portrayed. The relevance of these new proteomic approaches based on 2-D electrophoresis or electron capture dissociation analysis methods was initially documented in mammals. Extended use to Arabidopsis model systems is promising for the discovery of controlling mechanisms induced by these particular post-translational modifications and their biological role in plants.  相似文献   

5.
M B Mudgett  J D Lowenson    S Clarke 《Plant physiology》1997,115(4):1481-1489
Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability.  相似文献   

6.
Protein carboxyl methyltransferases from erythrocytes and brain appear to catalyze the esterification of L-isoaspartyl and/or D-aspartyl residues but not of normal L-aspartyl residues. In order to identify the origin of these unusual residues which occur in subpopulations of a variety of cellular proteins, we studied the in vitro methylation by the erythrocyte enzyme of glucagon, a peptide hormone of 29 amino acids containing 3 aspartyl residues and a single asparagine residue. Methylated glucagon was digested with either trypsin, chymotrypsin, pepsin, or endoproteinase Arg C, and the labeled fragments were separated by high-performance liquid chromatography and identified. In separate experiments, methyl acceptor sites were determined by digesting glucagon first with proteases and then assaying purified glucagon fragments for methyl acceptor activity. Using both approaches, we found that the major site of methylation, accounting for about 62% of the total, was at the position of Asp-9. Chemical analysis of fragments containing this residue indicated that this site represents an L-isoaspartyl residue. A second site of methylation, representing about 23% of the total, was detected at the position of Asn-28 and was also shown to represent an L-isoaspartyl residue. Methyl acceptor sites were not detected at the positions of Asp-15 or Asp-21. Preincubation of glucagon under basic conditions (0.1 M NH4OH, 3 h, 37 degrees C) increased methylation at the Asn-28 site by 4-8-fold while methylation at the Asp-9 site remained unchanged. These results suggest that methylation sites can originate from both aspartyl and asparaginyl residues and that these sites may be distinguished by the effect of base treatment.  相似文献   

7.
8.
Abnormal aspartyl residue formation such as L-isoaspartates occurs frequently during aging in long-lived proteins, resulting in the alteration of their structures and biological functions. In this study, we investigated the alteration of aspartyl residues in extracellular matrix (ECM) proteins, type-I collagen and fibronectin, and in integrin- and ECM-binding motifs during aging, as well as the resulting effects on cell biological functions such as migration and attachment. Using protein L-isoaspartyl methyltransferase (PIMT) to monitor the presence of L-isoaspartyl residues, we showed their accumulation during in vivo aging in type-I collagen from rats. In vitro aging of fibronectin as well as of peptides containing an integrin- or ECM-binding motif such as RGDSR, KDGEA and KDDL also resulted in the formation of L-isoaspartyl residues. While aged fibronectin does not alter cell adhesion and migration, type-I collagen aged 20 months reduced by 65% cell motility, but not adhesion, when compared to 3-month-aged type-I collagen. Finally, by repairing 20-month-old type-I collagen with recombinant PIMT (rPIMT), cell migration was recovered by 72%. These results strongly suggest that L-isoaspartyl residue formation in ECM proteins such as type-I collagen could play an important role in reducing cell migration and that PIMT could be a therapeutic tool to restore normal cell migration in pathological conditions where cell motility is crucial.  相似文献   

9.
Endoproteinase Asp-N, a metalloprotease from a mutant strain of Pseudomonas fragi, has been reported to specifically cleave on the N-terminal side of aspartyl and cysteic acid residues. We utilized this enzyme to generate fragments for determining the amino acid sequence of the D-aspartyl/L-isoaspartyl methyltransferase isozyme I from human erythrocytes. Surprisingly, we identified cleavage sites for this enzyme at the N-terminal side of several glutamyl residues in addition to the expected cleavage sites at aspartyl residues. The ability of this enzyme to cleave polypeptides at both glutamyl and aspartyl residues was confirmed by mapping additional sites on erythrocyte carbonic anhydrase I. These results indicate that a more appropriate name for this enzyme may be Endoproteinase Asp/Glu-N.  相似文献   

10.
The synthetic peptide, L-Val-L-Tyr-L-Pro-L-isoAsp-Gly-L-Ala, is a substrate for the erythrocyte and brain protein carboxyl methyltransferases. These enzymes catalyze the methyl esterification of the free alpha-carboxyl group of the isoaspartyl residue, to which the glycyl residue is linked through the side chain beta-carboxyl group. In this work, we show that the alpha-methyl ester of this peptide was rapidly demethylated (t1/2 = 4 min at 37 degrees C, pH 7.4) in erythrocyte cytosolic extracts and that the product of this reaction appears to be the succinimide ring derivative of the peptide. The rate of demethylation, measured at either pH 6.0 or 7.4, was the same in buffer and erythrocyte extracts, suggesting that succinimide formation was a nonenzymatic reaction. The L-succinimide is more stable than the ester, but can be hydrolyzed in buffer at pH 7.4 (t1/2 = 180 min at 37 degrees C) to give a mixture of about 75% isoaspartyl peptide and 25% normal aspartyl peptide. The metabolism of the succinimide hexapeptide in erythrocyte extracts appears to be more complex, however. The implications of this work for the methylation and demethylation of cellular proteins containing structurally altered aspartyl residues are discussed.  相似文献   

11.
We have synthesized a series of L-isoaspartyl-containing (isoD) peptides and characterized their interaction with the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase (EC 2.1.1.77). Our findings indicate that this enzyme interacts with 6 residues extending from the isoD-2 to isoD+3 positions in peptide substrates. Although peptides as simple as G-isoD-G are methylated with low affinity (Km = 17.8 mM), a wide variety of L-isoaspartyl-containing sequences in larger peptides are recognized with high affinity (Km less than 20 microM), the best yet discovered being VYP-isoD-HA, with a Km of 0.29 microM. Only two sequence elements have been found that can interfere with the high affinity binding of peptides of 4 or more residues, these being a prolyl residue in the isoD+1 position and negatively charged residues in the isoD+1, isoD+2, and/or isoD+3 positions. We investigated the effect of higher order structure on binding affinity using several L-isoaspartyl-containing proteins. Although conformation did, in some cases, lower the affinity of the methyltransferase for L-isoaspartyl residues, the range of kinetic constants for the methylation of these proteins was similar to that observed with the synthetic peptides. The L-isoaspartyl/D-aspartyl methyltransferase has been proposed to function in vivo to prevent the accumulation of L-isoaspartyl residues that arise spontaneously as proteins age. To examine whether such a mechanism is feasible given the wide range of substrate Km values observed in vitro, we set up a computer simulation to model the degradation and methylation reactions in aging human erythrocytes. Our results suggest that enough methyltransferase activity exists in these cells to significantly lower the expected number of L-isoaspartyl residues, even when these residues have millimolar Km values for methylation.  相似文献   

12.
Amyloid Abeta1-42 peptide (Abeta1-42) and its isomers with an isoaspartyl residue at position 7 or 23 [Abeta1-42(isoAsp7) and Abeta1-42(isoAsp23)] were synthesized in high purity by the Fmoc-solid phase technique, followed by HPLC on a silica-based reversed-phase column under the basic conditions. Importantly, Abeta1-42(isoAsp23) aggregated more strongly than native Abeta1-42 and showed significant neurotoxicity, while the aggregation ability and neurotoxicity of Abeta1-42(isoAsp7) was weak. This suggests that the isomerization of the aspartyl residues plays an important role in fibril formation in Alzheimer's disease.  相似文献   

13.
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is approximately 680,000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits.  相似文献   

14.
J Momand  S Clarke 《Biochemistry》1987,26(24):7798-7805
We have been interested in the metabolic fate of proteins containing aspartyl succinimide (Asu) residues. These residues can be derived from the spontaneous rearrangement of Asp and Asn residues and from the spontaneous demethylation of enzymatically methylated L-isoAsp and D-Asp residues. Incubation of the synthetic hexapeptide N-Ac-Val-Tyr-Pro-Asu-Gly-Ala with the cytosolic fraction of human erythrocytes resulted in rapid cleavage of the prolyl-aspartyl succinimide bond producing the tripeptide N-Ac-Val-Tyr-Pro. The rate of this reaction is equal for both L- and D-Asu-containing peptides and is 10-fold greater than the rate of cleavage of a corresponding peptide containing a normal Pro-Asp linkage. When the aspartyl succinimide ring was replaced with an isoaspartyl residue, the cleavage rate was about 5 times that of the normal Pro-Asp peptide. The tripeptide-producing activity copurified on DEAE-cellulose chromatography with an activity that cleaves N-carbobenzoxy-Gly-Pro-4-methylcoumarin-7-amide, a post-proline endopeptidase substrate. These two activities were both inhibited by an antiserum to rat brain post-proline endopeptidase, and it appears that they are catalyzed by the same enzyme. This enzyme has a molecular weight of approximately 80,000 and is covalently labeled and inhibited by [3H]diisopropyl fluorophosphate. The facile cleavage of the succinimide- and isoaspartyl-containing peptides by this post-proline endopeptidase suggests that it may play a role in the metabolism of peptides containing altered aspartyl residues.  相似文献   

15.
Aspartyl and asparaginyl deamidation, isomerization, and racemization reactions have been studied in synthetic peptides to model these spontaneous processes that alter protein structure and function. We show here that the peptide L-Val-L-Tyr-L-Pro-L-Asn-Gly-L-Ala undergoes a rapid deamidation reaction with a half-life of only 1.4 days at 37 degrees C, pH 7.4, to give an aspartyl succinimide product. Under these conditions, the succinimide product can further react by hydrolysis (half-time, 2.3h) and by racemization (half-time, 19.5 h). The net product of the deamidation reaction is a mixture of L- and D-normal aspartyl and beta-transpeptidation (isoaspartyl) hexapeptides. Replacement of the asparagine residue by an aspartic acid residue results in a 34-fold decrease in the rate of succinimide formation. Significant racemization was found to accompany the deamidation and isomerization reactions, and most of this could be accounted for by the rapid racemization of the succinimide intermediate. Replacement of the glycyl residue in the asparagine-containing peptide with a bulky leucyl or prolyl residue results in a 33-50-fold decrease in the rate of degradation. Peptide cleavage products are observed when these Asn-Leu and Asn-Pro-containing peptides are incubated. Our studies indicate that both aspartic acid and asparagine residues may be hot spots for the nonenzymatic degradation of proteins, especially in cells such as erythrocytes and eye lens, where these macromolecules must function for periods of about 120 days and 80 years, respectively.  相似文献   

16.
It is clear that many factors can perturb T cell homeostasis that is critical in the maintenance of immune tolerance. Defects in the molecules that regulate homeostasis can lead to autoimmune pathology. This simple immunologic concept is complicated by the fact that many self-proteins undergo spontaneous posttranslational modifications that affect their biological functions. This is the case in the spontaneous conversion of aspartyl residues to isoaspartyl residues, a modification occurring at physiological pH and under conditions of cell stress and aging. We have examined the effect of isoaspartyl modifications on the effector functions of T lymphocytes in vivo using mice lacking the isoaspartyl repair enzyme protein carboxyl methyltransferase (PCMT). PCMT(-/-) CD4(+) T cells exhibit increased proliferation in response to mitogen and Ag receptor stimulation as compared with wild-type CD4(+) T cells. Hyperproliferation is marked by increased phosphorylation of members of both the TCR and CD28 signaling pathways. Wild-type mice reconstituted with PCMT(-/-) bone marrow develop high titers of anti-DNA autoantibodies and kidney pathology typical of that found in systemic lupus erythematosus. These observations, coupled with the fact that humans have polymorphisms in the pcmt gene, suggest that isoaspartyl self-proteins may alter the maintenance of peripheral immune tolerance.  相似文献   

17.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.  相似文献   

18.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

19.
Protein L-isoaspartyl methyltransferases (PIMT; EC 2.1.1.77) catalyze the S-adenosylmethionine-dependent methylation of L-isoaspartyl residues that arise spontaneously in proteins with age, thereby initiating a repair process that restores the normal backbone configuration to the damaged polypeptide. In Drosophila melanogaster, overexpression of PIMT in transgenic flies extends the normal life span, suggesting that protein damage can be a limiting factor in longevity. To understand structural features of the Drosophila PIMT (dPIMT) important for catalysis, the crystal structure of dPIMT was determined at a resolution of 2.2 A, and site-directed mutagenesis was used to identify the role of Ser-60 in catalysis. The core structure of dPIMT is similar to the modified nucleotide-binding fold observed in PIMTs from extreme thermophiles and humans. A striking difference of the dPIMT structure is the rotation of the C-terminal residues by 90 degrees relative to the homologous structures. Effectively, this displacement generates a more open conformation that allows greater solvent access to S-adenosylhomocysteine, which is almost completely buried in other PIMT structures. The enzyme may alternate between the open conformation found for dPIMT and the more closed conformations described for other PIMTs during its catalytic cycle, thereby allowing the exchange of substrates and products. Catalysis by dPIMT requires the side chain of the conserved, active site residue Ser-60, since substitution of this residue with Thr, Gln, or Ala reduces or abolishes the methylation of both protein and isoaspartyl peptide substrates.  相似文献   

20.
Over time and under stressing conditions proteins are susceptible to a variety of spontaneous covalent modifications. One of the more commonly occurring types of protein damage is deamidation; the conversion of asparagines into aspartyls and isoaspartyls. The physiological significance of isoaspartyl formation is emphasized by the presence of the conserved enzyme L-isoaspartyl O-methyltransferase (PIMT), whose physiological function appears to be in preventing the accumulation of deamidated proteins. Seemingly consistent with a repair function, overexpression of PIMT in Drosophila melanogaster extends lifespan under conditions expected to contribute to protein damage. Based on structural information and sequence homology we have created mutants of residues proposed to be involved in co-factor binding in Escherichia coli PIMT. Both mutants retain S-adenosyl L-methionine binding capabilities but demonstrate dramatically reduced kinetic capabilities, perhaps suggestive of catalytic roles beyond co-factor binding. As anticipated, overexpression of the wild type enzyme in E. coli results in bacteria with increased tolerance to thermal stress. Surprisingly, even greater levels of heat tolerance were observed with overexpression of the inactive PIMT mutants. The increased survival capabilities observed with overexpression of PIMT in E. coli, and possibly in Drosophila, are not due to increased isoaspartyl repair capabilities but rather a temperature-independent induction of the heat shock system as a result of overexpression of a misfolding-prone protein. An alternate hypothesis as to the physiological substrate and function of L-isoaspartyl methyltransferase is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号