首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver microsomal cytochrome P-448 purified from 3-methylcholanthrene-treated rats or rabbits contained seven free sulfhydryl groups per mole of enzyme as determined by amino acid analysis or by spectrophotometric titrations with 5,5′-dithiobis(2-nitroben-zoic acid), 4,4′-dipyridinedisulfide, 2-nitro-5-thiocyanobenzoic acid, and p-mercuribenzoate. The rat cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited 70% after modification of the enzyme with 5,5′-dithiobis(2-nitrobenzoic acid) but was unaffected after titration of the enzyme with other sulfhydryl reagents, suggesting that the sulfhydryl groups may not be essential for catalysis. On the other hand, the rabbit cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited following the modification of this enzyme with all of the sulfhydryl reagents listed above. Whether the loss in catalytic activity in this case is due to the essential role of the sulfhydryl groups in catalysis or to the steric hindrance or conformational change due to the substituent is uncertain.  相似文献   

2.
Restriction endonucleases are highly specific in recognizing the particular DNA sequence they act on. However, their activity is affected by sequence context, enzyme concentration and buffer composition. Changes in these factors may lead to either ineffective cleavage at the cognate restriction site or relaxed specificity allowing cleavage of degenerate ‘star’ sites. Additionally, uncharacterized restriction endonucleases and engineered variants present novel activities. Traditionally, restriction endonuclease activity is assayed on simple substrates such as plasmids and synthesized oligonucleotides. We present and use high-throughput Illumina sequencing-based strategies to assay the sequence specificity and flanking sequence preference of restriction endonucleases. The techniques use fragmented DNA from sequenced genomes to quantify restriction endonuclease cleavage on a complex genomic DNA substrate in a single reaction. By mapping millions of restriction site–flanking reads back to the Escherichia coli and Drosophila melanogaster genomes we were able to quantitatively characterize the cognate and star site activity of EcoRI and MfeI and demonstrate genome-wide decreases in star activity with engineered high-fidelity variants EcoRI-HF and MfeI-HF, as well as quantify the influence on MfeI cleavage conferred by flanking nucleotides. The methods presented are readily applicable to all type II restriction endonucleases that cleave both strands of double-stranded DNA.  相似文献   

3.
The yeast 2 μm DNA plasmid nucleoprotein complex was subjected to restriction endonuclease digestion to ascertain whether all possible sites are equally accessible to hydrolysis. When plasmid nucleoprotein complexes which had been fixed with formaldehyde were exhaustively digested with restriction endonucleases HinfI or CfoI, only a few of the limit digest products were produced. Furthermore, the limited set of restriction endonuclease sites exposed in formaldehyde-treated plasmid chromosomes could be shown to be preferentially hydrolyzed when plasmid chromosomes which had not been treated with formaldehyde were digested with the same restriction endonucleases. Mapping of the preferred sites revealed that they mapped to the region of the plasmid near the replication origin. These results demonstrate that the protection of DNA from nuclease activity is not constant along the plasmid chromatin, and that a region near the replication origin is preferentially exposed to endonuclease hydrolysis.  相似文献   

4.
A new type II restriction endonuclease which we designated as Bsu121I has been isolated from gram-positive bacterium Bacillus subtilis strain 121 and partially purified. The restriction endonuclease was isolated from cell extracts using step-wise purification through ammonium sulfate precipitation, followed by phosphocellulose column chromatography. SDS-PAGE profile showed denatured molecular weights (23 and 67 kDa) of the endonuclease. The partially purified enzyme restricted pBR322 DNA into two fragments of 3200 and 1700 bp. The endonuclease activity required Mg+2 as cofactor like other type II endonucleases.  相似文献   

5.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

6.
The recognition sequence and cleavage positions of a new restriction endonuclease BtrI isolated from Bacillus stearothermophilus SE-U62 have been determined. BtrI belongs to a rare type IIQ of restriction endonucleases, which recognise non-palindromic nucleotide sequences and cleave DNA symmetrically within them.  相似文献   

7.
A molecular method based on PCR-restriction fragment length polymorphism (RFLP) analysis of internal transcribed spacer (ITS) ribosomal DNA sequences was designed to rapidly identify fungal species, with members of the genus Pleurotus as an example. Based on the results of phylogenetic analysis of ITS sequences from Pleurotus, a PCR-RFLP endonuclease autoscreening (PRE Auto) program was developed to screen restriction endonucleases for discriminating multiple sequences from different species. The PRE Auto program analyzes the endonuclease recognition sites and calculates the sizes of the fragments in the sequences that are imported into the program in groups according to species recognition. Every restriction endonuclease is scored through the calculation of the average coefficient for the sequence groups and the average coefficient for the sequences within a group, and then virtual electrophoresis maps for the selected restriction enzymes, based on the results of the scoring system, are displayed for the rapid determination of the candidate endonucleases. A total of 85 haplotypes representing 151 ITS sequences were used for the analysis, and 2,992 restriction endonucleases were screened to find the candidates for the identification of species. This method was verified by an experiment with 28 samples representing 12 species of Pleurotus. The results of the digestion by the restriction enzymes showed the same patterns of DNA fragments anticipated by the PRE Auto program, apart from those for four misidentified samples. ITS sequences from 14 samples (of which nine sequences were obtained in this study), including four originally misidentified samples, confirmed the species identities revealed by the PCR-RFLP analysis. The method developed here can be used for the identification of species of other living microorganisms.  相似文献   

8.
As a corollary to X-ray crystallographic work performed by H. Muirhead, detailed studies on crystalline pig muscle phosphoglucose isomerase have been conducted to establish its basic physical and chemical properties. The enzyme species being investigated by X-ray diffraction has been determined to be isoenzyme III. Its molecular weight in the native state was found to be 132,000, its s020,w value to be 7·25 S. The enzyme is composed of two subunits of equal molecular weight (66,000). Its amino acid composition is largely similar to that of rabbit muscle phosphoglucose isomerase, with the significant exception that the pig muscle isomerase contains only three sulfhydryl groups per polypeptide chain (two of them accessible to titration with p-mercuribenzoate) as compared with twice that number for the rabbit muscle enzyme. This low number of sulfhydryl groups is interpreted as being responsible for the ease with which heavy-atom, isomorphous derivatives could be prepared for the pig muscle enzyme by Shaw & Muirhead (1977).  相似文献   

9.
A new HaeIII isochizomer from Streptococcus agalactiae was isolated by a single-step purification method. The highly active restriction endonuclease, SagI, was free of nonspecific nuclease activity and was suitable for use in molecular biology procedures. The rapid isolation procedure may be applicable for the recovery of other restriction endonucleases from bacteria.  相似文献   

10.
The sites on the left arm of bacteriophage λ DNA cleaved by the restriction endonucleases isolated from Hemophilus influenzae strain Rc (HincII) and Rd (HindII+III), and Hemophilus parainfluenzae (HpaI) were localized on the λ physical map, and the fragments resulting from these cleavages were identified by gel electrophoresis. The restriction sites within the b2 region of λ were mapped by analysis of the digestion profiles of deletion and substitution derivatives of λ, as well as by digesting individual fragments produced by one restriction endonuclease with another restriction endonuclease. The restriction sites on the λ genome between the left vegetative end and the b2 region were mapped entirely by successive digestion experiments. The restriction fragment map for the right arm of λ may be found in the accompanying paper (Robinson and Landy, 1977).  相似文献   

11.
Chan SH  Bao Y  Ciszak E  Laget S  Xu SY 《Nucleic acids research》2007,35(18):6238-6248
Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5′ half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein–DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.  相似文献   

12.
The aim of this study was to improve a useful molecular tool—TaqII restriction endonuclease-methyltransferase—by rational protein engineering, as well as to show an application of our novel method of restriction endonuclease activity modulation through a single amino acid change in the NPPY motif of methyltransferase. An amino acid change was introduced using site-directed mutagenesis into the taqIIRM gene. The mutated gene was expressed in Escherichia coli. The protein variant was purified and characterized. Previously, we described a TspGWI variant with an amino acid change in the methyltransferase motif IV. Here, we investigate a complex, pleiotropic effect of an analogous amino acid change on its homologue—TaqII. The methyltransferase activity is reduced, but not abolished, while TaqII restriction endonuclease can be reactivated by sinefungin, with an increased DNA recognition fidelity. The general method for engineering of the IIS/IIC/IIG restriction endonuclease activity/fidelity is developed along with the generation of an improved TaqII enzyme for biotechnological applications. A successful application of our novel strategy for restriction endonuclease activity/fidelity alteration, based on bioinformatics analyses, mutagenesis and the use of cofactor-analogue activity modulation, is presented.  相似文献   

13.
14.
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.  相似文献   

15.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

16.
A circular DNA molecule was isolated from chloroplasts of Chorella ellipsoidea. The DNA had a buoyant density of 1.695 grams per cubic centimeter (36% GC) and a contour length of 56 micrometers (175 kilobase pairs). The restriction endonuclease analysis gave the same size. Agarose gel electrophoretic patterns of chloroplast DNA digested by several restriction endonucleases were also presented. The digestion by the restriction enzymes, HpaII, MspI, SmaI, and XmaI revealed no appreciable methylation at CG sites in chloroplast DNA.  相似文献   

17.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

18.
Restriction endonucleases are the basic tools of molecular biology. Many restriction endonucleases show relaxed sequence recognition, called star activity, as an inherent property under various digestion conditions including the optimal ones. To quantify this property we propose the concept of the Fidelity Index (FI), which is defined as the ratio of the maximum enzyme amount showing no star activity to the minimum amount needed for complete digestion at the cognate recognition site for any particular restriction endonuclease. Fidelity indices for a large number of restriction endonucleases are reported here. The effects of reaction vessel, reaction volume, incubation mode, substrate differences, reaction time, reaction temperature and additional glycerol, DMSO, ethanol and Mn2+ on the FI are also investigated. The FI provides a practical guideline for the use of restriction endonucleases and defines a fundamental property by which restriction endonucleases can be characterized.  相似文献   

19.
AvaI andBsoBI restriction endonucleases are isoschizomers which recognize the symmetric sequence 5′CYCGRG3′ and cleave between the first C and second Y to generate a four-base 5′ extension. TheAvaI restriction endonuclease gene (avaIR) and methylase gene (avaIM) were cloned intoEscherichia coli by the methylase selection method. TheBsoBI restriction endonuclease gene (bsoBIR) and part of theBsoBI methylase gene (bsoBIM) were cloned by the “endo-blue” method (SOS induction assay), and the remainder ofbsoBIM was cloned by inverse PCR. The nucleotide sequences of the two restriction-modification (RM) systems were determined. Comparisons of the predicted amino acid sequences indicated thatAvaI andBsoBI endonucleases share 55% identity, whereas the two methylases share 41% identity. Although the two systems show similarity in protein sequence, their gene organization differs. TheavaIM gene precedesavaIR in theAvaI RM system, while thebsoBIR gene is located upstream ofbsoBIM in theBsoBI RM system. BothAvaI andBsoBI methylases contain motifs conserved among the N4 cytosine methylases.  相似文献   

20.
Hjc resolvase is an archaeal enzyme involved in homologous DNA recombination at the Holliday junction intermediate. However, the structure and the catalytic mechanism of the enzyme have not yet been identified. We performed database searching using the amino acid sequence of the enzyme from Pyrococcus furiosus as a query. We detected 59 amino acid sequences showing weak but significant sequence similarity to the Hjc resolvase. The detected sequences included DpnII, HaeII and Vsr endonuclease, which belong to the type II restriction endonuclease family. In addition, a highly conserved region was identified from a multiple alignment of the detected sequences, which was similar to an active site of the type II restriction endonucleases. We substituted three conserved amino acid residues in the highly conserved region of the Hjc resolvase with Ala residues. The amino acid replacements inactivated the enzyme. The experimental study, together with the results of the database searching, suggests that the Hjc resolvase is a distantly related member of the type II restriction endonuclease family. In addition, the results of our database searches suggested that the members of the RecB domain superfamily are evolutionarily related to the type II restriction endonuclease family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号