首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of rabbit visual cortical neurons to single and repetitive intracortical electrical stimulation were investigated. The stimulating electrode was located 0.7–1.2 mm away from the recording electrode. Response thresholds to single stimulation were as a rule 150–180 µA, whereas to series of stimuli they were 30–60 µA. The latent period to the first spike averaged 5–15 msec but the probability of the initial discharge was very low, namely 3–6%. With an increase in current intensity the duration of the initial inhibitory pause was increased in half of the neurons responding to it, whereas in the rest it was unchanged. After presentation of series of stimuli spontaneous activity was enhanced for a short time (4–6 sec). In about half of the cells the same kinds of discharge dynamics were observed in response to repetitive stimulation (frequency 0.25 Hz) as in responses to light, but more neurons with sensitization of discharge and fewer "habituating" neurons took part in responses to electrical stimulation. It is postulated that stimulation of a given point of the visual cortex evokes excitation of a local neuron hypercolumn and inhibition of neighboring cell columns.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 412–419, July–August, 1983.  相似文献   

2.
Unit responses in the acoustic-lateral region of the medulla to electrical and mechanical stimulation of the lateral line organs were investigated in acute experiments on curarized catfish. Of the total number of neurons 70% possessed spontaneous activity. An electrical stimulus evoked a tonic response both in spontaneously active and in "silent" cells. Three main types of firing pattern of the neurons were distinguished: fast-adapting, slow-adapting, and grouped. As regards the relation of the neurons to polarity of the stimulus they were subdivided into two groups. The thresholds of unit responses to electrical stimulation varied considerably: from 2.5·10–9 to 5·10–12 A/mm2. The effect of intensity of the electrical stimulation on unit responses in the medulla is analyzed. The precise dependence of on- and off-responses of each neuron on stimulus intensity of any polarity was determined. The neurons were shown to be sensitive to both electrical and mechanical stimuli. It is postulated that this phenomenon is due to convergence of impulses from electrical and mechanical receptors of the lateral line on the neurons. The properties of the central neurons are compared with those of the peripheral electroreceptor system in catfish.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 156–163, March–April, 1973.  相似文献   

3.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

4.
Bragin  A. G.  Vinogradova  O. S. 《Neurophysiology》1985,17(2):102-108
Embryonic septal and hippocampal tissue was transplanted into a cavity formed by removal of part of the parietal cortex of adult rats by suction. By extracellular recording 4–6 months after the operation cells with spontaneous activity with a frequency of 3.6±0.4 Hz, characterized by an irregular, stochastic spike distribution, were detected in the graft. About 90% of cells responded to electrical stimulation of neighboring cortical areas after a latent period of 5–43 msec. The most stable responses appeared to stimulation with frequencies of 5–10 Hz; in most cases the evoked discharge was followed by a period of inhibition of spontaneous activity (100–700 msec). The same number of cells responded to tactile stimulation of the body surface and vibrissae of the recipient animal. Specific responses of different types with latent periods of between 50 and 600 msec were observed. Normalization of unit activity of intracerebral grafts compared with activity of cells in tissue developing in the anterior chamber of the eye, and their functional integration with the recipient's brain are discussed.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 160–168, March–April, 1985.  相似文献   

5.
Bioelectrical responses of acoustico-lateral neurons to electrical stimulation of the ampullae of Lorenzini were investigated in acute experiments on the anesthetized Black Sea skateTrigon pastinaca. Three types of responses were found: a primary composite response, prolonged activity, and single unit activity. Excitation of the neurons corresponded to a more marked negative phase, and inhibition to a more marked positive phase of the primary response. The thresholds of the unit responses to adequate electrical stimulation were 10–9–10–10 A/mm2 and the minimal latent period 20 msec. The spontaneous activity of some neurons clearly depended on the animal's respiration. The character of the response depended on stimulus polarity, as reflected in the appearance of on- and off-responses. A tonic type of response with features of adaptation was predominant. The dependence of some response parameters (latent period of on- and off-responses, firing rate, duration of the contrast interval, response thresholds) on those of the stimulus is analyzed. The mechanisms of these bioelectrical responses are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol.6, No.1, pp.59–67, January–February, 1974.  相似文献   

6.
Unit responses in the caudal part of the tegmentum were investigated by a microstimulation method in the mesencephalic cat. The thresholds of appearance of direct and synaptic responses with latencies of 0.8–1.4 and 1.1–2.0 msec were found to depend on the distance from the electrode to the cell recorded. Responses with a low threshold (0.2–1.1 µV) were found much more often in neurons located 6.3–7.0 mm from the surface of the inferior colliculus than in more dorsal or more ventral zones. The relationship between the threshold I, in A, of the direct response of the low-threshold cells and their distance r, in , from the stimulating electrode is approximated satisfactorily by the equation I=3.3·10–4r1.8+0.2. The curve of I as a function of r for synaptic responses is usually more sloping and it has minima for responses recorded not near the cell. The index of synaptic response of some cells rose with an increase in the frequency of stimulation to 20–60/sec.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 593–601, November–December, 1973.  相似文献   

7.
Synaptic responses of different functional groups of interneurons in segments T10 and T11 to stimulation of the ipsilateral and contralateral medullary reticular formation were investigated in anesthetized cats with only the ipsilateral lateral funiculus remaining intact. Activation of reticulospinal fibers of the lateral funiculus with conduction velocities of 30–100 m/sec was shown to induce short-latency and, in particular, monosynptic EPSPs in all types of cells tested: in interneurons excited by group Ia muscle afferents, in cells activated only by high-threshold cutaneous and muscle afferents (afferents of the flexor reflex), in cells activated mainly by descending systems, and, to a lesser degree, in neurons connected with low-threshold cutaneous afferents. These cell populations are located mainly in the central and lateral parts of Rexed's lamina VII. Most neurons in laminae I–V of the dorsal horn, except six cells located in the superficial layers of the dorsal horn, received no reticulofugal influences. The functional organization of connections of the lateral reticulospinal tract with spinal neurons is discussed and compared with the analogous organization of the medial reticulospinal tract, and also of the "lateral" (cortico- and rubrospinal) descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 150–161, March–April, 1978.  相似文献   

8.
Postsynaptic inhibition in the general cortex of the turtle forebrain was investigated by recording unit activity intracellularly. Depending on the type of IPSPs recorded in response to electrical stimulation of the contralateral optic nerve and cortical surface the neurons were subdivided into three groups: 1) with long direct IPSPs, 2) with long and short direct, and also recurrent IPSPs, 3) with short direct and recurrent IPSPs. It is concluded that inhibitory pathways of the short direct and recurrent IPSPs have a common final component, a stellate interneuron. Compared with the recurrent collaterals of the principal neurons, the direct afferents make contact with more distal portions of the dendrites of this cell. Synapses formed on dendrites of the principal neurons by axons of the stellate cells are nearer to the soma than synapses responsible for generation of the long direct IPSP.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 375–383, July–August, 1973.  相似文献   

9.
Heterosynaptic interactions between synapses located at a considerable distance from the cell body (perforant path) and lying close to the body of the neuron (synapses of Schaffer's collaterals and axons of the dentate fascia) on guinea pig hippocampal neurons were investigatedin vitro. It was shown by the paired stimulus method that, using stimulation of subthreshold intensity for action potential generation, spatiotemporal summation takes place in both pairs of synaptic systems. If above-threshold stimulation was used, afferents lying close to the cell body suppressed responses evoked by stimulation of distant afferents for a longer time (up to 20 msec in area CA1 and up to 300 msec in area CA3) than during the opposite combination of stimuli (up to 3–8 msec). After tetanization of the dentate fascia depression of responses of area CA3 neurons to stimulation of the perforant path was observed for 2–30 min. In the remaining cases, no significant prolonged heterosynaptic posttetanic changes were observed. The possible mechanisms of these interactions are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 524–532, November–December, 1979.  相似文献   

10.
Temporal characteristics of motor responses evoked in unanesthetized cats by stimulation of the motor cortex through bipolar needle electrodes were investigated in chronic experiments. Isometric and isotonic contractions of the flexor muscles of the hip and knee joints of the limb contralateral to the point of stimulation were recorded. The latent period of response varied from 100 msec or more in the case of low-frequency (100–150 Hz) and low-threshold (1.1–1.2 thresholds) stimulation of the motor cortex to 30–35 msec in the case of "optimal" parameters of stimulation (300–400 Hz, 1.5–1.6 thresholds). If the intensity of stimulation was high enough the rising time constant of evoked contraction was 50–80 msec; values of the falling time constant of muscular contraction after cessation of stimulation were much greater, namely 150–300 msec. The rising time constant of contraction decreased with an increase in both the frequency and strength of motor cortical stimulation. The results are examined and discussed from the standpoint of methods of automatic control theory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 451–458, September–October, 1980.  相似文献   

11.
The processing of proprioceptive information from the exopodite-endopodite chordotonal organ in the tailfan of the crayfish Procambarus clarkii (Girard) is described. The chordotonal organ monitors relative movements of the exopodite about the endopodite. Displacement of the chordotonal strand elicits a burst of sensory spikes in root 3 of the terminal ganglion which are followed at a short and constant latency by excitatory postsynaptic potentials in interneurones. The afferents make excitatory monosynaptic connections with spiking and nonspiking local interneurones and intersegmental interneurones. No direct connections with motor neurones were found.Individual afferents make divergent patterns of connection onto different classes of interneurone. In turn, interneurones receive convergent inputs from some, but not all, chordotonal afferents. Ascending and spiking local interneurones receive inputs from afferents with velocity thresholds from 2–400°/s, while nonspiking interneurones receive inputs only from afferents with high velocity thresholds (200–400°/s).The reflex effects of chordotonal organ stimulation upon a number of uropod motor neurones are weak. Repetitive stimulation of the chordotonal organ at 850°/s produces a small reduction in the firing frequency of the reductor motor neurone. Injecting depolarizing current into ascending or non-spiking local interneurones that receive direct chordotonal input produces a similar inhibition.  相似文献   

12.
On-responses of primary visual cortical neurons to local photic stimulation of the receptive field center by stimuli of scotopic and mesopic ranges of intensity were investigated in dark-adapted curarized cats. Only phasic excitation (type I) was observed in 16% of cells studied, phasic and prolonged excitation with phasic inhibition between them (type II) was observed in 68%, and prolonged inhibition (type III) alone in 16% of cells. The thresholds of phasic excitation in the neuronal responses lay between 0.7 and 2200 trolands (td) and coincided with thresholds of activation of the cone system, whereas thresholds of prolonged excitation lay within the range 0.02–9 td and coincided with thresholds of rod inputs. Inhibitory effects were manifested as phasic inhibition observed on peristimulus histograms, disturbances of the monotony of the responses versus stimulus intensity curve, and also as prolonged inhibition in on-responses. All inhibitory effects were observed in the mesopic range of intensities (0.7–2200 td) and were connected with functioning of the cones.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 359–366, July–August, 1982.  相似文献   

13.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

14.
Postsynaptic responses evoked by stimulation of the descending tract and dorsal roots were investigated by means of intracellular microelectrodes in experiments on preparation of the isolated lamprey spinal cord. Besides giant reticulospinal (Mullerian) axons, a broad spectrum of descending fibers and dorsal-root afferents were shown to form synaptic inputs with both chemical and electrical mechanisms of transmission with motoneurons, as revealed by the sensitivity of the corresponding PSPs to absence of calcium ions and excess of magnesium ions in the external medium. During combined stimulation electrotonic PSPs may have a rapid temporal course characteristic of elementary responses, but they may also lead to smooth and slow depolarization of the postsynaptic membrane, evidence that they may perform not only a mediator but also an integrative function.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 512–517, September–October, 1977.  相似文献   

15.
The responses of the interneurons of the thoracic segments of the spinal cord to stimulation of the intercostal and splanchnic nerves were studied on decerebrated and narcotized cats. It was established that the neurons of different layers of the gray matter (according to Rexed) differ substantially in type of afferent inputs. Cells in laminae I–III and IV are activated chiefly by somatic afferents: primarily high-threshold in laminae I–III and low-threshold in lamina IV. The neurons of lamina V and most of the neurons of laminae VII and VIII respond to stimulation of high-threshold somatic afferents (cutaneous fibers of the A group and muscle afferents of groups II and III), as well as visceral afferents of group A, conducting impulses at a rate of 9–35 m/sec. Cells of laminae VII and VIII, monosynaptically activated by muscle afferents of group I, do not respond to stimulation of the visceral afferents. The peculiarities of the "functional" laminar organization of the thoracic segments of the spinal cord are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 563–572, November–December, 1970.  相似文献   

16.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

17.
Single unit responses in nuclei of the vestibular complex to stimulation of the labyrinths and of proprioceptive and autonomic afferents were investigated. Different types of unit responses were obtained to stimulation, including evoked activity consisting of a group of action potentials followed by inhibition of the spike discharge. Unit activity in the vestibular nuclei was shown to depend on extralabyrinthine stimulation. In response to adequate stimulation of the labyrinths by tilting the head, the role of receptors of muscles and joints in the neck was distinguished. The question of the somatotopic organization of the vestibular nuclei and convergence of various afferent flows on neurons giving rise to the vestibulospinal tract is discussed.Institute of Medico-Biological Problems, Ministry of Health of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 507–513, September–October, 1976.  相似文献   

18.
Synaptic responses of single units in the "locomotor strip" of the hindbrain were recorded extracellularly. Short-latency responses appeared in neurons of the rostral part of the strip to stimulation of the "locomotor region" of the mesencephalon. Neurons of the caudal part of the strip responded to microstimulation of its other regions, including rostral. If the distance between the neuron and point of stimulation was under 2–3 mm, short-latency (1.2–1.6 msec) responses could be observed. The thresholds and latent periods of the responses increased when the distance apart increased. Polysynaptic responses with a latent period of 3–4 msec could be potentiated by an increase in the frequency of stimulation up to 30–40 Hz. It is suggested that axons of the "locomotor strip" are oriented in the rostrocaudal direction for a distance of 2–3 mm and give off collaterals which run toward neighboring neurons. The strip may be an integrative center, "intercalated" between the rostral portions of the brain stem and spinal cord.Deceased.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 510–518, September–October, 1978.  相似文献   

19.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

20.
The response of neurons of different hypothalamic structures to stimulation of painful tooth pulp afferents and painless sciatic nerve Aß afferents was investigated during acute experiments on cats. It was found that 80.7%, 81.5%, and 71.4% of neurons of the posterior, tuberal, and anterior hypothalamus respectively, responded to stimulation of the tooth pulp. Shortest latency of response was recorded in the posterolateral hypothalamus. Latency of response was shorter in the lateral than in the medial structures throughout the hypothalamus. A distinct prevalence of excitatory response was found in neurons of the posterior area and an almost equal proportion of excitatory and inhibitory response in neurons of the tuberal and anterior hypothalamus. A high degree of convergence between noxious and nonnoxious somatic afferents were discovered in hypothalamic neurons: 85.8% of those studied responded to stimulation of the sciatic nerve Aß afferents. The comparable unidirectional response pattern of hypothalamic neurons to stimulation of tooth pump painful afferents and painless sciatic nerve Aß fibers point to the nonspecific nature of the response observed in the mainstream population of multisensory hypothalamic neurons. A small population of unimodal nociceptive neurons (14.2%) was found in the hypothalamus. Nociceptive responses of anterior hypothalamic neurons were distinguished by their long refractory phase, lasting 200–500 msec, and their low rate of reproduction during rhythmic stimulation of tooth pulp (1.5–2 Hz). Neuronal organization of the nociceptive hypothalamic afferent system is discussed together with the role of convergent and specific "nociceptive" neurons in the shaping of thalamic regulatory functions.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 171–180, March–April, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号