首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
Gangliosides support neural retina cell adhesion   总被引:10,自引:0,他引:10  
Cell surface carbohydrates and complementary carbohydrate receptors may mediate cell-cell recognition during neuronal development. To model such interactions, we developed a technique to test the ability of cell surface lipids (particularly glycosphingolipids) to mediate specific cell recognition and adhesion (Blackburn, C.C., and Schnaar, R.L. (1983) J. Biol. Chem. 258, 1180-1188). When cells were incubated on plastic microwells adsorbed with various glycolipids, carbohydrate-specific cell adhesion was readily detected. We report here the use of this method to study adhesion of embryonic chick neural retina cells to purified cell surface lipids. Rapid and specific cell adhesion was observed when the neural retina cells were incubated on surfaces adsorbed with gangliosides (an important class of neuronal cell surface glycoconjugates) but not on surfaces adsorbed with various neutral glycosphingolipids, phospholipids, or sulfatide. This suggests that the observed cell adhesion was specific for the carbohydrate moiety of the adsorbed ganglioside and was not due to nonspecific ionic or hydrophobic interactions. Although the surface density of adsorbed lipid required to support cell adhesion was the same for all gangliosides examined, the extent of adhesion varied when different purified gangliosides were used. Ganglioside-specific adhesion was not dependent on the presence of calcium (at 37 degrees C) and was attenuated by pretreatment of the cells with trypsin. The extent of ganglioside-directed neural retinal cell adhesion varied with embryonic age. These results imply that gangliosides may play a role in cell-cell recognition in the developing nervous system.  相似文献   

2.
Immobilized glycoconjugates for cell recognition studies   总被引:2,自引:0,他引:2  
Specific cell-cell recognition and adhesion may involve cell surface glycoconjugates on one cell binding the complementary carbohydrate receptors on an apposing cell surface. Such interactions have been modeled by immobilizing simple synthetic glycosides, glycoproteins, glycosaminoglycans, and glycolipids on otherwise inert plastic surfaces and incubating them with intact cells. Using this approach, the ability of several cell types to recognize specific carbohydrates has been demonstrated. This carbohydrate-directed cell adhesion may depend on cell surface carbohydrate receptors which mediate both the initial specific adhesion and complex postrecognition cellular responses. While the relationship of the cell adhesion demonstrated here to cell-cell recognition in vivo has yet to be determined, this well-controlled biochemical approach may reveal new information on the way in which cells analyze and respond to their immediate external environment.  相似文献   

3.
The glycosphingolipid composition of the human hepatoma cell line,Hep-G2   总被引:2,自引:0,他引:2  
The origin of plasma glycosphingolipids in normal individuals and the mechanisms by which tumor-associated glycosphingolipid antigens enter the plasma in patients with cancer are largely unknown. The Hep-G2 human hepatoma cell line retains many of the characteristics of differentiated hepatocytes including the ability to synthesize and secrete lipoproteins. Preliminary results indicated that newly synthesized Hep-G2 cell glycosphingolipids are coupled to the secreted lipoproteins. This suggests that this cell line may offer an interesting model for studying glycosphingolipid secretion, transfer, and shedding. We now report on the chemical and immunological characterization of Hep-G2 cell glycosphingolipids. Five major glycosphingolipids were purified and biochemically characterized: glycosylceramide, lactosyl ceramide, ceramide trihexoside, ganglioside GM3, and lactosyl sulfatide. Four additional minor components (3-fucosyl-lactosamine containing glycolipids, asialo GM2, galactosylgloboside, and ganglioside GM1) were identified using a combination of exoglycosidase digestion and immunostaining of thin-layer chromatography plates with specific carbohydrate binding proteins. This demonstrates that although this cell line synthesizes a limited number of major glycosphingolipids, it retains the ability to produce at least small amounts of structures in the lactoneo, globo, and ganglio series of glycosphingolipids. These studies show that it will be possible to investigate the mechanisms of secretion by Hep-G2 cells of different classes of these molecules such as neutral glycosphingolipids, gangliosides, and sulfatides.  相似文献   

4.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

5.
Sulfated glycolipids and cell adhesion   总被引:6,自引:0,他引:6  
The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfatides, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The three proteins differ, however, in the inhibition of their binding to sulfatides by sulfated polysaccharides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand factor, suggesting the involvement of laminin or thrombospondin, or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed on plastic promotes the attachment and spreading of some melanoma cells. Interestingly, fucoidan and an antibody against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment to thrombospondin-coated surfaces. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed on plastic also promote attachment and spreading of some cultured cell lines. Direct adhesion of melanoma cells requires high densities of adsorbed sulfatide. In the presence of laminin, however, specific adhesion of some cell types to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin is mediating adhesion by crosslinking receptors on the cell surface to sulfatide adsorbed on the plastic. Although thrombospondin also binds to sulfatides and to melanoma cells, it does not enhance but rather inhibits direct and laminin-dependent melanoma cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycolipids can participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

6.
Biosynthesis and degradation of mammalian glycosphingolipids   总被引:4,自引:0,他引:4  
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin.  相似文献   

7.
Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesion strengthening, which does not occur at 4 degrees C. Of various cytoskeletal and metabolic perturbants tested, only a combination of hyperosmotic medium, colchicine, and cytochalasin caused a marked (72%) reduction of adhesion strengthening (without reducing weak cell adhesion). Clathrin and actin were readily detected in the adhesive patch by immunofluorescence microscopy. Rat hepatocytes also adhered avidly to surfaces derivatized with asialofetuin, a high-affinity ligand for the rat hepatic lectins. However, hepatic lectin molecules did not migrate into a patch on the asialofetuin-derivatized surface, suggesting that hepatic lectin-asialofetuin binding may have resulted in the rapid formation of a ring of essentially irreversibly adherent receptors that prevented diffusion of additional lectin molecules into the contact site. The cells were unable to increase their adhesive contact area by flattening onto the derivatized surface. Treatment of cells with cytochalasin, however, did result in an increase in the size of the contact area. Cells adhering to surfaces derivatized with an adhesion-promoting peptide (containing an arg-gly-asp sequence) had larger contact areas than those adhering to galactoside-derivatized surfaces. A model is proposed in which carbohydrate-mediated adhesion causes specific reorganization of cytoskeletal components, leading to strengthened adhesion and a characteristic spherical cell morphology.  相似文献   

8.
The glycosphingolipids of human lymphoma MOLT-4 cells were studied, using biochemical methods and specific antisera to gangliosides. The major neutral glycosphingolipids were found to be glucosyl- and lactosyl ceramides. GM3, GM2, GM1 and GD1a were identified as ganglioside components.  相似文献   

9.
Glycolipid and cell surface carbohydrate antigens of human polymorphonuclear neutrophils (PMN) and of HL-60 myeloid leukemia cells were analyzed with a panel of defined, monoclonal anti-carbohydrate antibodies. Antigenicities of intact PMN, HL-60, and retinoic acid-induced HL-60 (r.a.-HL-60) were studied by flow cytofluorometry. These three cell populations displayed quantitative differences, some of which were induction dependent, in their expression of lactosyl, N-acetyllactosaminyl, Y-hapten (Fuc alpha 1----2Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R), and sialosyl-X-hapten (SA alpha 2----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R) specificities. Structures reactive with antibodies specific for long-chain mono-, and di- or tri- alpha 1----3 fucosylated lacto-series glycolipids were also detected. Glycosphingolipids purified from organic extracts of these cells were analyzed to seek information concerning the chemical basis for these surface antigenic differences, to assess the structural and antigenic diversity of PMN and HL-60 glycolipids, and to quantitate chemically and antigenically prominent glycolipids. Binding of monoclonal antibodies to thin-layer chromatograms demonstrated that each of the specificities on intact cells was carried by one or more distinct glycolipids. The abundance of immunoreactive glycolipids in the extracts paralleled the relative staining intensities of the intact cell populations. Several "cryptic" glycolipid antigens, including alpha 2----6 sialosylated structures enriched five- to 10-fold in PMN extracts, were not detected on intact cells. Lactosylceramide accounted for two-thirds of the approximately 1.5 X 10(9) glycolipid molecules contained in each PMN. The remaining glycolipid antigens appeared to include structurally diverse fucolipids, fucogangliosides, and neutral and sialosylated glycolipids with Gal beta 1----4GlcNAc beta 1----R terminal core structure. The abundance, diversity, and induction-dependent expression of these structures suggest that they may participate in PMN maturation and function.  相似文献   

10.
Cell-cell adhesion is a multi-step process which may be initiated by binding of cell surface carbohydrates to complementary carbohydrate receptors on apposing cell surfaces. We have modeled such interactions using polyacrylamide gels covalently derivatized with glycosides, to which intact cells specifically adhere; chicken hepatocytes adhere to gels derivatized with N-acetylglucosamine (GlcNAc). Initially adhesion is blocked (or reversed) by soluble GlcNAc, but becomes sugar-resistant rapidly at 37 degrees C, perhaps due to cellular modification of the carbohydrate-derivatized surface (Guarnaccia, S. P., Kuhlenschmidt, M. S., Slife, C. W., and Schnaar, R. L. (1982) J. Biol. Chem. 257, 14293-14299). We report here that, subsequent to recognition and adhesion, intact chicken hepatocytes transfer phosphate covalently to GlcNAc-derivatized gels. Metabolically radiolabeled cells (32Pi) were incubated on polyacrylamide gels derivatized with various aminohexyl glycosides. Noncovalently bound material was then removed from the gels by extensive washing in detergents and salt solutions. Subsequent radiochemical analysis revealed that phosphate was transferred selectively to GlcNAc-derivatized gels (up to 20-fold more than to glucose-, galactose-, or mannose-derivatized gels). Soluble GlcNAc (but not other sugars) or low temperature inhibited phosphate transfer. The phosphorylation was mediated by intact cells; cell lysate was itself incapable of specific phosphate transfer and attenuated specific transfer when added to intact cells. When GlcNAc was immobilized using a cleavable (disulfide-containing) linker arm the transferred phosphate radiolabel could be solubilized by disulfide reduction and recovered for further analysis. The released phosphorylated product migrated as a single low molecular weight species upon gel permeation chromatography, paper electrophoresis, and cellulose thin layer chromatography. Acid hydrolysis of the phosphorylated product generated a compound with the mobility of GlcNAc-6-P in five different separation systems. Treatment with alkaline phosphatase converted the radiolabel to a compound with the properties of inorganic phosphate. These data indicate that; subsequent to carbohydrate recognition and adhesion, intact hepatocytes generate phosphomonoesters of recognized carbohydrates outside of their plasma membranes.  相似文献   

11.
Human neutrophils, when exposed to soluble stimuli, aggregate, release oxygenated products of arachidonic acid and generate active oxygen species. Sphingolipid-derived products such as sphingosine and lysosphingolipids have been shown to exert selective actions on a variety of cell types, including neutrophils. Therefore, to determine the structural basis for selective inhibition of neutrophil responses by naturally occurring sphingolipids, seven compounds were prepared by total organic synthesis, and their impact on neutrophils in suspension has been studied. The compounds synthesized included sphingosine, psychosine, lactosyl lysosphingolipid, globotriaosyl (Gb3) lysosphingolipid, galactosyl cerebroside, lactosyl ceramide and Gb3 ceramide. The neutrophil responses studied were aggregation, leukotriene generation and superoxide anion production. When exposed to non-cytotoxic levels of the synthetic compounds, as monitored by exclusion of Trypan Blue, none of the synthetic sphingolipids inhibited A23187-induced aggregation of neutrophils. Only lactosyl lysosphingolipid, at a concentration of 1 microM, significantly inhibited aggregation induced by fMetLeuPhe; the other compounds in this series including sphingosine were without effect at equal molar concentrations (1 microM). Aggregation induced by phorbol 12-myristate 13-acetate (PMA) (0.1 microM) was significantly blocked by only two of the synthetic sphingolipids (1 microM). At concentrations below 1 microM, these inhibitory actions were not evident, nor was it possible to assign a structure-activity relationship for this series of compounds. None of the synthetic sphingolipids effectively inhibited the generation of superoxide anions induced by PMA. In addition, neither synthetic sphingosine nor psychosine affected either the formation or metabolism of leukotriene B4. Taken together, the results provide further evidence that sphingolipids, when added to intact cells, are not potent selective inhibitors of functional responses of human neutrophils.  相似文献   

12.
The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase- coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly different from those on fibronectin and glycosidase surfaces. The distinction between fibronectin- or glycosidase- and lectin- or galactose oxidase (an enzyme with lectin-type characteristics)-coated surfaces was further supported by the finding that cytochalasin B and EDTA inhibited cell attachment to fibronectin- and glycosidase-coated surfaces but not lectin-coated surfaces. (b) Fibronectin, if labeled and added to a cell suspension, showed only low or negligible interaction with the cell surface. However, fibronectin absorbed on plastic surfaces showed a high cell-attaching activity. It is assumed that fibronectin coated on plastic surfaces may form polyvalent attachment sites in contrast to its lower valency in aqueous solution. (c) Various inhibitors of cell attachment to both fibronectin- , galactose oxidase-, and lectin-coated surfaces were effective only during the first few minutes of the adhesion assay, after which time the attached cells became insensitive to the inhibitors. It is suggested that the initial specific recognition on either lectin-type or fibronectin-type surfaces is followed by an active cell-dependent attachment process. The primary role of the adhesion surface is to stimulate the cell-dependent attachment response. (d) Cells attached on tetravalent concanavalin A (Con A) spread very rapidly and quantitatively, whereas divalent succinyl Con A and monovalent Con A were effective stimulators of cell attachment but not cell spreading. Cross-linking of succinyl Con A restored the cell spreading activity. Tetravalent Con A surfaces specifically bind soluble glycoproteins, whereas succinyl Con A has a greatly reduced ability to bind the same glycoproteins. These results suggest that cross-linking of cell surface glycoproteins by the multivalent adhesive surface may trigger the cellular reaction leading to cell spreading.  相似文献   

13.
Many different molecular species mediate cell adhesion during embryonic development. These can have either protein or carbohydrate functional groups, which can act in either a homophilic or a heterophilic manner, and often in concert. We report here that a monoclonal antibody, M4B, raised against Xenopus blastomere membranes, inhibits the calcium-dependent adhesion of dissociated blastomeres. M4B maintains its inhibitory effect on adhesion when converted into univalent fragments, and specifically affects calcium-dependent adhesion. The antigen is regulated in both space and time during early development. It is found on cell surfaces throughout the egg to blastula stages, but is more concentrated on cells in the animal and marginal zones of the blastula. It is dramatically downregulated during gastrulation, and becomes largely restricted to gut epithelium by the larval stages. We show also that M4B function is spatially differentiated at the blastula stage, since it inhibits the aggregation of dissociated animal cells to a greater extent than vegetal cells. This membrane antigen may therefore play a role in the differential adhesion observed between different regions of the blastula, and which we presume to underlie the segregation of the primary germ layers during gastrulation. M4B recognizes a complex of plasma membrane glycolipids. Periodate treatment destroys the ability of these glycolipids to react with the antibody, indicating that the epitope resides in the carbohydrate moiety of the glycolipids. Chemical characterization shows that it is a neutral glycolipid, and that the major component is of the glycoglycerolipid, rather than the more common glycosphingolipid class. Blocking experiments with oligosaccharides of defined structure, and antibody crossreactivity show that the M4B antibody does not recognize several known embryonic carbohydrate antigens. These results demonstrate that M4B antibody recognizes a novel group of developmentally regulated glycolipids which function in calcium-dependent cell--cell adhesion in the Xenopus blastula.  相似文献   

14.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   

15.
The specificity of Campylobacter pylori cell surface lectin, a presumptive colonization factor, was investigated using various sulfated and sialic acid containing glycolipids. C. pylori cells, cultured from human antral mucosal biopsies, were incubated with intact and modified glycolipid preparations and examined for agglutination inhibition of human erythrocytes. Titration data revealed that the inhibitory activity was highest with lactosylceramide sulfate and GM3 ganglioside, while galactosylceramide sulfate GM1, GD1a and GD1b gangliosides were less effective. A strong inhibitory activity towards C. pylori hemagglutin was also observed with an antiulcer agent, sucralfate. The inhibitory effect of both types of glycolipids was abolished by the removal of sialic acid and sulfate ester groups, thus indicating that sulfated and sialic acid containing glycolipids with terminal lactosyl moieties serve as mucosal receptors for colonization of gastric epithelium by C. pylori.  相似文献   

16.
As a consequence of detecting an IgM M-protein (naturally occurring diseased-state monoclonal antibody) immunoreactive to insect acidic glycolipids in a patient with demyelinating peripheral neuropathy, normal human sera were examined for the occurrence of heterophile antibodies directed against carbohydrate epitopes present on glycosphingolipids of Calliphora vicina (Insecta: Diptera). The insect glycolipids can be separated into neutral, zwitterionic, and acidic types, according to whether the oligosaccharide chains consist of neutral monosaccharides only, or carry an additional phospho-ethanolamine side chain and/or a beta-glucuronic acid residue, respectively. Natural antibody activity to these three classes of insect glycosphingolipids was detected in all normal human sera examined. The antibody activities were separated by sequential chromatography on affinity columns of octyl-Sepharose 4B-bound neutral and zwitterionic glycolipids into three populations with differing epitope-type specificities. As expected for heterophile antibodies, they are mainly of the IgM class. Population I recognized epitopes present on the three types of insect glycolipids, i.e., the neutral oligosaccharide chain backbone, the main determinant of which contains a terminal N-acetylhexosamine. Immunoreactivity is separable into at least four subpopulations of differing carbohydrate epitope specificity. Population II recognized epitopes containing phosphoethanolamine in zwitterionic and some acidic insect glycolipids. There are two subpopulations, the majority of which require the free amino group of phosphoethanolamine for immunoreactivity. Population III antibodies showed immunoreactivity to terminal beta-glucuronic acid-containing epitopes present only on acidic insect glycolipids.  相似文献   

17.
We have prepared protein-peptide conjugates composed of bovine serum albumin (BSA) derivatized with short peptides containing the Arg-Gly-Asp (RGD) sequence derived from the adhesion site of fibronectin. The RGD-BSA conjugates were used to coat tissue culture plastic surfaces which then served as substrata in cell adhesion experiments. Our results indicate that the efficiency of adhesion to RGD-BSA-coated surfaces is highly dependent on the valency of the (RGD)n-BSA conjugates. For example, on surfaces with approximately equal amounts of RGD ligand, CHO cells adhered virtually 100% to the (RGD)n-BSA (n = 20.8) conjugate and not at all to the (RGD)n-BSA (n = 3.5) conjugate. Adhesion on (RGD)n-BSA-coated substrata and on fibronectin- or vitronectin-coated substrata was also examined in terms of the relationship between cell adhesion and the intermolecular distances of adsorbed proteins. It was observed that for substrata coated with relatively compact, symmetric molecules, such as RGD-BSA or vitronectin, adhesion dropped off sharply as intermolecular distances increased; by contrast, for fibronectin, a large asymmetric molecule, adhesion declined more gradually as intermolecular distances increased. Finally, we have examined the role of different cell-surface receptors in the process of adhesion to RGD-BSA substrata. Interestingly, competition and blocking experiments with antibodies and with soluble competing proteins suggest that it is the vitronectin receptor rather than the fibronectin receptor which mediates adhesion to RGD-BSA.  相似文献   

18.
Summary Oil-in-water emulsions containing aqueous-soluble glycolipids combined with synthetic or naturally occurring fatty acid esters derived from mycobacteria were found to be potent tumor regressive preparations. An apparent mode of action of these fatty acid esters in regression of treated tumors was shown to be that of binding glycolipids to oil droplets. A model is presented.  相似文献   

19.
Properties of a specific glycolipid transfer protein from bovine brain   总被引:4,自引:0,他引:4  
A transfer protein specific for glycolipids has been isolated from bovine brain. As judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, the protein is 68% pure and has a molecular weight of 20 000. Three different assays were employed to study the protein's specificity and glycolipid binding properties. The protein transferred several different neutral glycosphingolipids and ganglioside GM1 equally well, but failed to accelerate phosphatidylcholine or sphingomyelin intervesicular movement. The protein's ability to interact with glycolipids was strongly influenced by the physical properties of the matrix phospholipid in which the glycolipids reside. Both the phase state of the phospholipid matrix and bilayer curvature affected glycolipid intervesicular transfer rates. Protein binding to phospholipid vesicles containing either tritium-labeled or pyrene-labeled glucosylceramide could not be demonstrated by density gradient centrifugation or fluorescence energy transfer measurements, respectively. A specific association of the transfer protein for pyrene-labeled glucosylceramide was found when the fluorescence emission of the pyrene excimer-to-monomer ratio was measured suggesting that a portion of the fluorescent glycolipid was being sequestered from the phospholipid vesicles and was binding to the freely soluble protein.  相似文献   

20.
The glycosphingolipids isolated from the detergent-insoluble material (DIM) of whole cells as well as from a similar detergent-insoluble substrate attachment matrix (DISAM) have been investigated in comparison with the glycosphingolipids of whole cells. The proportion of glycolipids in the total lipid extract was enriched in the DISAM as well as DIM fractions as compared to whole cells. The ratio of ganglioside (GM3) to neutral glycolipids was also higher in the DISAM fractions than in whole cells. The radioactivity incorporated into DISAM glycolipids of BHK cells, metabolically labeled with radioactive glucosamine, was greater in confluent cells than in sparsely growing cells; however, label incorporation into glycolipids of the DISAM fraction of BHKpy cells was 2–3-fold higher than that of confluent BHK cells, although the chemical quantity of GM3 in whole cells was much lower in BHKpy cells than in BHK cells. In order to confirm the enhanced label in DISAM glycolipids of BHKpy cells by other procedures, the labeled cells were detached by EGTA, washed, and reattached on plates. The amount of label in DISAM glycolipids of the reattached matrix of BHKpy cells was much higher than that of BHK cells.Cell spreading and cell attachment on plastic plate were inhibited by inclusion of GM3 in the medium. These data suggest that: (i) glycolipids, particularly GM3, at the cell attachment site have different metabolic activity from those of whole cells; the label in glycolipids goes preferentially into cell attachment sites, and may have some functional role in regulating cell attachment of BHK cells; (ii) metabolic activity and turnover of GM3 in cell attachment sites of confluent cells are higher than actively growing cells, yet those of transformed cells are much higher than any state of non-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号