首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA) play a critical role in maintaining an inactive Cdc2, the steps downstream of PKA in the oocyte remain unknown. Using a small-pool expression-screening strategy, we have isolated several putative PKA substrates from a mouse oocyte cDNA library. One of these clones encodes a Wee1-like kinase that prevents progesterone-induced oocyte maturation when expressed in Xenopus oocytes. Unlike the widely expressed Wee1 and Myt1, mWee1B mRNA and its protein are expressed only in oocytes, and mRNA downregulation by RNAi injection in vitro or transgenic overexpression of RNAi in vivo causes a leaky meiotic arrest. Ser15 residue of mWee1B is the major PKA phosphorylation site in vitro, and the inhibitory effects of the kinase are enhanced when this residue is phosphorylated. Thus, mWee1B is a key MPF inhibitory kinase in mouse oocytes, functions downstream of PKA, and is required for maintaining meiotic arrest.  相似文献   

2.
Cell cycle regulation of a Xenopus Wee1-like kinase.   总被引:5,自引:0,他引:5       下载免费PDF全文
Using a polymerase chain reaction-based strategy, we have isolated a gene encoding a Wee1-like kinase from Xenopus eggs. The recombinant Xenopus Wee1 protein efficiently phosphorylates Cdc2 exclusively on Tyr-15 in a cyclin-dependent manner. The addition of exogenous Wee1 protein to Xenopus cell cycle extracts results in a dose-dependent delay of mitotic initiation that is accompanied by enhanced tyrosine phosphorylation of Cdc2. The activity of the Wee1 protein is highly regulated during the cell cycle: the interphase, underphosphorylated form of Wee1 (68 kDa) phosphorylates Cdc2 very efficiently, whereas the mitotic, hyperphosphorylated version (75 kDa) is weakly active as a Cdc2-specific tyrosine kinase. The down-modulation of Wee1 at mitosis is directly attributable to phosphorylation, since dephosphorylation with protein phosphatase 2A restores its kinase activity. During interphase, the activity of this Wee1 homolog does not vary in response to the presence of unreplicated DNA. The mitosis-specific phosphorylation of Wee1 is due to at least two distinct kinases: the Cdc2 protein and another activity (kinase X) that may correspond to an MPM-2 epitope kinase. These studies indicate that the down-regulation of Wee1-like kinase activity at mitosis is a multistep process that occurs after other biochemical reactions have signaled the successful completion of S phase.  相似文献   

3.
Z Tang  T R Coleman    W G Dunphy 《The EMBO journal》1993,12(9):3427-3436
The Wee1 protein kinase negatively regulates the entry into mitosis by catalyzing the inhibitory tyrosine phosphorylation of the Cdc2 protein. To examine the potential mechanisms for Wee1 regulation during the cell cycle, we have introduced a recombinant form of the fission yeast Wee1 protein kinase into Xenopus egg extracts. We find that the Wee1 protein undergoes dramatic changes in its phosphorylation state and kinase activity during the cell cycle. The Wee1 protein oscillates between an underphosphorylated 107 kDa form during interphase and a hyperphosphorylated 170 kDa version at mitosis. The mitosis-specific hyperphosphorylation of the Wee1 protein results in a substantial reduction in its activity as a Cdc2-specific tyrosine kinase. This phosphorylation occurs in the N-terminal region of the protein that lies outside the C-terminal catalytic domain, which was recently shown to be a substrate for the fission yeast Nim1 protein kinase. These experiments demonstrate the existence of a Wee1 regulatory system, consisting of both a Wee1-inhibitory kinase and a Wee1-stimulatory phosphatase, which controls the phosphorylation of the N-terminal region of the Wee1 protein. Moreover, these findings indicate that there are apparently two potential mechanisms for negative regulation of the Wee1 protein, one involving phosphorylation of its C-terminal domain by the Nim1 protein and the other involving phosphorylation of its N-terminal region by a different kinase.  相似文献   

4.
5.
6.
In Xenopus embryos, the cell cycle is driven by an autonomous biochemical oscillator that controls the periodic activation and inactivation of cyclin B1-CDK1. The oscillator circuit includes a system of three interlinked positive and double-negative feedback loops (CDK1 -> Cdc25 -> CDK1; CDK1 -/ Wee1 -/ CDK1; and CDK1 -/ Myt1 -/ CDK1) that collectively function as a bistable trigger. Previous work established that this bistable trigger is essential for CDK1 oscillations in the early embryonic cell cycle. Here, we assess the importance of the trigger in the somatic cell cycle, where checkpoints and additional regulatory mechanisms could render it dispensable. Our approach was to express the phosphorylation site mutant CDK1AF, which short-circuits the feedback loops, in HeLa cells, and to monitor cell cycle progression by live cell fluorescence microscopy. We found that CDK1AF-expressing cells carry out a relatively normal first mitosis, but then undergo rapid cycles of cyclin B1 accumulation and destruction at intervals of 3-6 h. During these cycles, the cells enter and exit M phase-like states without carrying out cytokinesis or karyokinesis. Phenotypically similar rapid cycles were seen in Wee1 knockdown cells. These findings show that the interplay between CDK1, Wee1/Myt1, and Cdc25 is required for the establishment of G1 phase, for the normal approximately 20-h cell cycle period, and for the switch-like oscillations in cyclin B1 abundance characteristic of the somatic cell cycle. We propose that the HeLa cell cycle is built upon an unreliable negative feedback oscillator and that the normal high reliability, slow pace and switch-like character of the cycle is imposed by a bistable CDK1/Wee1/Myt1/Cdc25 system.  相似文献   

7.
The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2.  相似文献   

8.
To investigate the regulatory mechanisms of the cell cycle transition from M phase to M phase in meiotic cycles, a XENOPUS: oocyte extract that performs the M-M transition has been developed. Using the meiotic extract, we found that a low level of Cdc2 activity remained at the exit of meiosis I (MI), due to incomplete degradation of cyclin B. The inactivation of the residual Cdc2 activity induced both entry into S phase and tyrosine phosphorylation on Cdc2 after MI. Quantitative analysis demonstrated that a considerable amount of Wee1 was present at the MI exit and Cdc2 inhibitory phosphorylation during this period was suppressed by the dominance of Cdc2 over Wee1. Consistently, the addition of more than a critical amount of Wee1 to the extract induced Cdc2 inhibitory phosphorylation, changing the M-M transition into an M-S-M transition. Thus, the Cdc2 activity remaining at MI exit is required for suppressing entry into S phase during the meiotic M-M transition period.  相似文献   

9.
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.  相似文献   

10.
Uto K  Sagata N 《The EMBO journal》2000,19(8):1816-1826
Nek2, a NIMA-related kinase, has been postulated to play a role in both the meiotic and mitotic cell cycles in vertebrates. Xenopus has two Nek2 splice variants, Nek2A and Nek2B, which are zygotic and maternal forms, respectively. Here we have examined the role of Nek2B in oocyte meiosis and early embryonic mitosis. Specific inhibition of Nek2B function does not interfere with the oscillation of Cdc2 activity in either the meiotic or mitotic cell cycles; however, it does cause abortive cleavage of early embryos, in which bipolar spindle formation is severely impaired due to fragmentation or dispersal of the centrosomes, to which endogenous Nek2B protein localizes. In contrast, inhibition of Nek2B function does not affect meiotic spindle formation in oocytes, in which functional centrosomes are absent. Thus, strikingly, Nek2B is specifically required for centrosome assembly and/or maintenance (and hence for normal bipolar spindle formation and cleavage) in early Xenopus embryos. Finally, (ectopic) Nek2A but not Nek2B is very labile in cleaving embryos, suggesting that Nek2A cannot replace the centrosomal function of Nek2B in early embryos.  相似文献   

11.
The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex.  相似文献   

12.
The activity of Cdk1–cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1–cyclin B1 activity through Wee1 dephosphorylation.  相似文献   

13.
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.  相似文献   

14.
Inoue D  Sagata N 《The EMBO journal》2005,24(5):1057-1067
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.  相似文献   

15.
In mammalian cells the Cdc25 family of dual-specificity phosphatases has three distinct isoforms, termed A, B, and C, which are thought to play discrete roles in cell-cycle control. In this paper we report the cloning of Xenopus Cdc25A and demonstrate its developmental regulation and key role in embryonic cell-cycle control. Northern and Western blot analyses show that Cdc25A is absent in oocytes, and synthesis begins within 30 min after fertilization. The protein product is localized in the nucleus in interphase and accumulates continuously until the midblastula transition (MBT), after which it is degraded. Upon injection into newly fertilized eggs, wild-type Cdc25A shortened the cell cycle and accelerated the timing of cleavage, whereas embryos injected with phosphatase-dead Cdc25A displayed a dose-dependent increase in the length of the cell cycle and a slower rate of cleavage. In contrast, injection of the phosphatase-dead Cdc25C isoform had no effect. Western blotting with an antibody specific for phosphorylated tyr15 in Cdc2/Cdk2 revealed a cycle of phosphorylation/dephosphorylation in each cell cycle in control embryos, and in embryos injected with phosphatase-dead Cdc25A there was a twofold increase in the level of p-tyr in Cdc2/Cdk2. Consistent with this, the levels of cyclin B/Cdc2 and cyclin E/Cdk2 histone H1 kinase activity were both reduced by approximately 50% after phosphatase-dead Cdc25A injection. The phosphatase-dead Cdc25A could be recovered in a complex with both Cdks, suggesting that it acts in a dominant-negative fashion. These results indicate that periodic phosphorylation of Cdc2/Cdk2 on tyr15 occurs in each pre-MBT cell cycle, and dephosphorylation of Cdc2/Cdk2 by Cdc25A controls at least in part the length of the cell cycle and the timing of cleavage in pre-MBT embryos. The disappearance of Cdc25A after the MBT may underlie in part the lengthening of the cell cycle at that time.  相似文献   

16.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

17.
L Wu  P Russell 《The EMBO journal》1997,16(6):1342-1350
In Schizosaccharomyces pombe, the activity of the M-phase-inducing Cdc2/Cdc13 cyclin-dependent kinase is inhibited by Wee1 and Mik1 tyrosine kinases, and activated by Cdc25 and Pyp3 tyrosine phosphatases. Cdc2/Cdc13 activity is also indirectly regulated by the approximately 70 kDa Nim1 (Cdrl) serine/threonine kinase, which promotes mitosis by inhibiting Wee1 via direct phosphorylation. To understand better the function and regulation of Nim1, the yeast two-hybrid system was used to isolate S.pombe cDNA clones encoding proteins that interact with Nim1. Sixteen of the 17 cDNA clones were derived from the same gene, named nif1 + (nim1 interacting factor-1). Nif1 is a novel approximately 75 kDa protein containing a leucine zipper motif. The Nif1-Nim1 interaction requires a small region of Nim1 that immediately follows the N-terminal catalytic domain. This region is required for Nim1 activity both in vivo and in vitro. delta nif1 mutants are approximately 10% smaller than wild type, indicating that Nif1 is involved in inhibiting the onset of mitosis. Consistent with this proposal, overproduction of Nif1 was found to cause a cell elongation phenotype that is very similar to delta nim1 mutants. Nif1 overproduction causes cell cycle arrest in cells that are partly defective for Cdc25 activity, but has no effect in delta nim1 or delta wee1 mutants. Nif1 also inhibits Nim1-mediated phosphorylation of Wee1 in an insect cell expression system. These observations strongly suggest that Nif1 negatively regulates the onset of mitosis by a novel mechanism, namely inhibiting Nim1 kinase.  相似文献   

18.
Cdc2 kinase activity is required for triggering entry into mitosis in all known eukaryotes. Elaborate mechanisms have evolved for regulating Cdc2 activity so that mitosis occurs in a timely manner, when preparations for its execution are complete. In Schizosaccharomyces pombe, Wee1 and a related Mik1 kinase are Cdc2-inhibitory kinases that are required for preventing premature activation of the mitotic program. To identify Cdc2-inhibitory kinases in Drosophila, we screened for cDNA clones that rescue S. pombe wee1- mik1- mutants from lethal mitotic catastrophe. One of the genes identified in this screen, Drosophila wee1 (Dwee1), encodes a new Wee1 homologue. Dwee1 kinase is closely related to human and Xenopus Wee1 homologues, and can inhibit Cdc2 activity by phosphorylating a critical tyrosine residue. Dwee1 mRNA is maternally provided to embryos, and is zygotically expressed during the postblastoderm divisions of embryogenesis. Expression remains high in the proliferating cells of the central nervous system well after cells in the rest of the embryo have ceased dividing. The loss of zygotically expressed Dwee1 does not lead to mitotic catastrophe during postblastoderm cycles 14 to 16. This result may indicate that maternally provided Dwee1 is sufficient for regulating Cdc2 during embryogenesis, or it may reflect the presence of a redundant Cdc2 inhibitory kinase, as in fission yeast.  相似文献   

19.
Positive regulation of Wee1 by Chk1 and 14-3-3 proteins   总被引:1,自引:0,他引:1  
Wee1 inactivates the Cdc2-cyclin B complex during interphase by phosphorylating Cdc2 on Tyr-15. The activity of Wee1 is highly regulated during the cell cycle. In frog egg extracts, it has been established previously that Xenopus Wee1 (Xwee1) is present in a hypophosphorylated, active form during interphase and undergoes down-regulation by extensive phosphorylation at M-phase. We report that Xwee1 is also regulated by association with 14-3-3 proteins. Binding of 14-3-3 to Xwee1 occurs during interphase, but not M-phase, and requires phosphorylation of Xwee1 on Ser-549. A mutant of Xwee1 (S549A) that cannot bind 14-3-3 is substantially less active than wild-type Xwee1 in its ability to phosphorylate Cdc2. This mutation also affects the intranuclear distribution of Xwee1. In cell-free kinase assays, Xchk1 phosphorylates Xwee1 on Ser-549. The results of experiments in which Xwee1, Xchk1, or both were immunodepleted from Xenopus egg extracts suggested that these two enzymes are involved in a common pathway in the DNA replication checkpoint response. Replacement of endogenous Xwee1 with recombinant Xwee1-S549A in egg extracts attenuated the cell cycle delay induced by addition of excess recombinant Xchk1. Taken together, these results suggest that Xchk1 and 14-3-3 proteins act together as positive regulators of Xwee1.  相似文献   

20.
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号