首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
闫凤鸣 《昆虫学报》2020,(2):123-130
大多数植物病毒及一些植物病原细菌由介体昆虫传播。植物病原与介体昆虫关系的研究有助于找到防控介体传播病原的关键环节,因此植物病原与介体昆虫的互作关系是植物病原传播机理研究中的核心问题。本文概述了国内外在植物病原与介体昆虫互作研究的最新进展,推介了本专辑论文的主要内容,并在此基础上,从生态和进化的角度提出了在植物病原-媒介昆虫互作研究中以下3个值得关注的研究方向:(1)植物病原与介体昆虫互作对生态系统的影响;(2)昆虫介体传播植物病毒的不同方式之间的关联性以及病毒、介体和植物之间的协同进化关系;(3)自然条件下植物病原-媒介昆虫互作的机理。植物病原与媒介昆虫互作的研究,既是生态和进化的理论问题,也和植物病原及其介体昆虫的绿色防控密切相关。  相似文献   

2.
Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.  相似文献   

3.
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.  相似文献   

4.
To date, tick-borne flaviviruses responsible for hemorrhagic fever in humans have been isolated in Siberia (Omsk hemorrhagic fever virus), India (Kyasanur Forest disease virus, KFDV), and in Saudi Arabia (Alkhurma virus, ALKV). Prior to this study, only partial coding sequences of these severe pathogens had been determined. We report here the complete coding sequence of ALK virus, which was determined to be 10,248 nucleotides (nt) long, and to encode a single 3,416 amino acid polyprotein. Independent analyses of the complete polyprotein and the envelope protein provided genetic and phylogenetic evidence that ALKV belongs to the tick-borne flavivirus group, within which it is most closely related to KFDV. Analysis of structural genes, genetic distances, and evolutionary relationship indicate that ALKV and KFDV derived from a common phylogenetic ancestor and constitute two genetic subtypes of the same virus species according to current genetic criteria of classification.  相似文献   

5.
Findings on climate change influence on plant pathogens are often inconsistent and context dependent. Knowledge of pathogens affecting agricultural crops and natural plant communities remains fragmented along disciplinary lines. By broadening the perspective beyond agriculture, this review integrates cross‐disciplinary knowledge to show that at scales relevant to climate change, accelerated evolution and changing geographic distribution will be the main implications for pathogens. New races may evolve rapidly under elevated temperature and CO2, as evolutionary forces act on massive pathogen populations boosted by a combination of increased fecundity and infection cycles under favourable microclimate within enlarged canopy. Changing geographic distribution will bring together diverse lineages/genotypes that do not share common ecological niche, potentially increasing pathogen diversity. However, the uncertainty of model predictions and a lack of synthesis of fragmented knowledge remain as major deficiencies in knowledge. The review contends that the failure to consider scale and human intervention through new technology are major sources of uncertainty. Recognizing that improved biophysical models alone will not reduce uncertainty, it proposes a generic framework to increase focus and outlines ways to integrate biophysical elements and technology change with human intervention scenarios to minimize uncertainty. To synthesize knowledge of pathogen biology and life history, the review borrows the concept of ‘fitness’ from population biology as a comprehensive measure of pathogen strengths and vulnerabilities, and explores the implications of pathogen mode of nutrition to fitness and its interactions with plants suffering chronic abiotic stress under climate change. Current and future disease management options can then be judged for their ability to impair pathogenic and saprophytic fitness. The review pinpoints improving confidence in model prediction by minimizing uncertainty, developing management strategies to reduce overall pathogen fitness, and finding new sources of data to trawl for climate signatures on pathogens as important challenges for future research.  相似文献   

6.
Global viral diversity is substantial, but viruses that contribute little to the public health burden or to agricultural damage receive minimal attention until a seemingly unimportant virus becomes a threat. The Zika virus (ZIKV) illustrated this, as there was limited information and awareness of the virus when it was identified as a public health emergency in February 2016. Predicting which virus may pose a future threat is difficult. This is in part because significant knowledge gaps in the basic biology and ecology of an emerging virus can impede policy development, delay decision making, and hinder public health action. We suggest using a phylogenetic framework of pathogens and their infected host species for insight into which animals may serve as reservoirs. For example, examining flaviviruses closely related to ZIKV, the phylogenetic framework indicates New World monkeys are the most likely candidates to be potential reservoirs for ZIKV. Secondarily, mammals that are in close proximity to humans should be considered because of the increased opportunity for pathogen exchange. The increase in human-mediated environmental change is accelerating the probability of another previously overlooked virus becoming a significant concern. By investing in basic science research and organizing our knowledge into an evolutionary framework, we will be better prepared to respond to the next emerging infectious disease.  相似文献   

7.
Classical predator–prey and host–parasite systems have been extensively studied in a food web context. Less attention has been paid to communities that include pathogens and their vectors. We present a coarse-grained, pan-African analysis of the relationships between the abiotic environment (location, precipitation, temperature), the species richness and community composition of ixodid ticks, and the species richness and community composition of pathogens that ticks transmit to humans. We found strong correlations between the abiotic environment and tick species richness, and a weak but significant correlation between the abiotic environment and pathogen species richness. A substantial amount of variation in community composition of parasites and pathogens was not explained by the variables that we considered. A structural equation model that compensated for the indirect effects of climate on the pathogen community via tick community composition suggested that while the environment strongly regulates tick community composition and tick community composition strongly regulates pathogen community composition, abiotic influences on pathogen species richness and community composition are weak. Our results support the view that changes in the broader environment will influence tick-borne pathogens primarily via the influence of the environment on ticks. The interactions that regulate host–vector–pathogen dynamics are of particular relevance in understanding the relationships between environmental change and health concerns, such as the impact of climate change on the occurrence of vector-borne diseases.  相似文献   

8.
Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a species‐rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two‐thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross‐species transmission and the epidemiological consequences of bacterial pathogens.  相似文献   

9.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

10.
The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.  相似文献   

11.
Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host–pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host–pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses—such as phylogenetic range, research effort, and being vector‐borne—are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host‐switching in pathogens.  相似文献   

12.
Yu S  Wuu A  Basu R  Holbrook MR  Barrett AD  Lee JC 《Biochemistry》2004,43(28):9168-9176
The mosquito-borne West Nile (WNV) and dengue 2 (DEN2V) viruses and tick-borne Langat (LGTV) and Omsk hemorrhagic fever (OHFV) viruses are arthropod-borne flaviviruses (family Flaviviridae, genus Flavivirus). These viruses are quite similar at both the nucleotide and amino acid level, yet they are very divergent in their biological properties and in the diseases they cause. The objective of this study was to examine the putative receptor-binding domains of the flaviviruses, the envelope (E) protein domain III (D3), which assume very similar structures either as part of the whole envelope protein or as individual entities, and to define the biophysical properties that distinguish among these viruses. Circular dichroism and Fourier transform infrared spectroscopy were employed to monitor the solution structure of these proteins. While the spectroscopic results found that the D3 from each of these viruses is composed of either beta-sheets or beta-turns, which is consistent with X-ray crystal data for tick-borne encephalitis and dengue viruses, these results reveal that recombinant D3s (rED3s) derived from tick-borne flaviviruses (LGT-rED3 and OHF-rED3) were similar to each other, while those from mosquito-borne flaviviruses (WN-rED3 and DEN-rED3) were similar to each other yet distinct from rED3 of the tick-borne viruses. Protein dynamic studies probed by fluorescence quenching and hydrogen/deuterium exchange found that the rED3s are dynamic entities. The tick-borne proteins again exhibit very similar dynamic properties, which are different from the mosquito-borne proteins. The WN-rED3 is significantly less stable than the other three rED3s. Overall, these differences in biophysical properties correlate with biological properties of these viruses that tick-borne flaviviruses are more stable than mosquito-borne flaviviruses.  相似文献   

13.
14.
Presently known flaviviruses belong to three major evolutionary branches: tick-borne viruses, mosquito-borne viruses and viruses with no known vector. Here we present the crystal structure of the Yokose virus methyltransferase at 1.7 Å resolution, the first structure of a methyltransferase of a Flavivirus with no known vector. Structural comparison of three methyltransferases representative of each of the Flavivirus branches shows that fold and structures are closely conserved, most differences being related to surface loops flexibility. Analysis of the conserved residues throughout all the sequenced flaviviral methyltransferases reveals that, besides the central cleft hosting the substrate and cofactor binding sites, a second, almost continuous, patch is conserved and points away from active site towards the back of the protein. The high level of structural conservation in this region could be functional for the methyltransferase/RNA interaction and stabilization of the ensuing complex.  相似文献   

15.

Background

The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model.

Methodology/Principal Findings

We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission.

Conclusions/Significance

Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.  相似文献   

16.
Phylogenetic analysis has become a powerful tool for the investigation of evolution at a molecular level. During the last three decades, statistical phylogenetics has increasingly been applied to the study of microbial pathogens. The new field of phylodynamics was formally introduced in 2004 and encompasses the interaction between evolutionary and ecological processes that shape the spatiotemporal and phylogenetic patterns of infectious disease dynamics. This novel framework has significantly enhanced the study of measurable evolving pathogen populations, in particular RNA viruses and retroviruses. One of the major challenges in phylodynamic studies, however, is the generation of data in the form of dense coverage in sequence sampling coupled with high quality epidemiological and/or accurate clinical information. This review focuses specifically on experimental and data assembling strategies that are required to test multi-level phylodynamic hypotheses, ranging from intra-host viral evolution to population dynamics of infectious disease pandemics. Ultimately, bridging the gap between rational experimental design and phylodynamic inference will prove to be essential to take full advantage of this new exciting area of research.  相似文献   

17.
Ixodid ticks are economically important as they cause direct damage to livestock and are vectors of several pathogens that cause diseases in humans and animals. Some of the important tick-borne pathogens of livestock are Theileria parva, T. annulata, Babesia bigemina, B. bovis, Anaplasma marginale and Cowdria ruminantium. These pathogens are responsible for causing enormous losses in livestock. Identification of factors that influence transmission and development of these pathogens in ticks will greatly facilitate development of rational strategies for control of tick-borne diseases. This research has been hampered by the lack of suitable artificial feeding methods. In this paper, Sam Waladde, Aian Young and Subhash Morzaria review recent developments in the artificial feeding of ixodid ticks and evaluate how this method can potentially be exploited. They use an example the transmission of an important livestock pathogen, T. parva, by Rhipicephalus appendiculatus.  相似文献   

18.
We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.The genus Flavivirus of the family Flaviviridae comprises over 70 viruses, many of which, such as the dengue (DEN) viruses, Japanese encephalitis (JE) virus, St. Louis encephalitis (SLE) virus, and yellow fever (YF) virus are important human pathogens (22, 31). Dengue and its severe and sometimes fatal forms, dengue hemorrhagic fever and dengue shock syndrome, alone affect nearly 80 million people a year (30). As demonstrated in recent outbreaks of meningitis by West Nile (WN) virus in Algeria and Romania, viruses of this group sometimes cause serious public health concern in unexpected locations (27).Most of these viruses were serologically classified into eight antigenic complexes, but many viruses, including the prototype of this group, YF virus, could not be affiliated with any complexes (6). Furthermore, many new viruses have been documented since the establishment of the serological classification, but their overall relationship with the other viruses has not been determined. The difficulty encountered with flavivirus classification partly derives from the extensive geographic distribution and the diversity of the arthropod vectors or vertebrates hosts associated with biological transmission of these viruses. Also, it derives from a confusion in virus nomenclature. For example, tick-borne encephalitis virus strains isolated primarily in western parts of Eurasia have been called TBE viruses, but, as clearly pointed out by Calisher (5), no such virus as tick-borne encephalitis virus (or TBE) has ever been registered to an international body dedicated to virus taxonomy. To compound the problem further, an increasing number of viruses have been added as new members of so-called TBE complex without a virus definition provided (16, 18, 29, 42, 52). This practice clearly demonstrates a need for establishing objective criteria for a better classification of those viruses.Molecular genetic classification of these viruses has been attempted before. In all previous studies, fewer than one-third of the members, primarily mosquito-borne and tick-borne viruses, were used to create phylogenetic trees, which showed evolution of mosquito-borne and tick-borne viruses from the presumed ancestor (3, 11). Since few sequence data were available from other viruses, in particular the viruses without known vectors (hereafter called the non-vector group), those phylogenetic trees provided only partial information.To establish a comprehensive phylogeny of the genus Flavivirus, we attempted to obtain the genomic sequence of a 1.0-kb segment at the 3′ terminus of the NS5 gene from all viruses whose sequences were not available. We analyzed, together with the other sequence data already published, the genetic relationships among the members of this group. Quantitative criteria based on a combination of the bootstrap support level and the pairwise nucleotide sequence identity were established to define subgeneric taxa. These included cluster, clade, and species. With our new taxonomic definitions, we then compared our genetic classification with the traditional system based on serological data.  相似文献   

19.
Many significant diseases of human civilization are thought to have arisen concurrently with the advent of agriculture in human society. It has been hypothesised that the food produced by farming increased population sizes to allow the maintenance of virulent pathogens, i.e. civilization pathogens, while domestic animals provided sources of disease to humans. To determine the relationship between pathogens in humans and domestic animals, I examined phylogenetic data for several human pathogens that are commonly evolutionarily linked to domestic animals: measles, pertussis, smallpox, tuberculosis, taenid worms, and falciparal malaria. The majority are civilization pathogens, although I have included others whose evolutionary origins have traditionally been ascribed to domestic animals. The strongest evidence for a domestic-animal origin exists for measles and pertussis, although the data do not exclude a non-domestic origin. As for the other pathogens, the evidence currently available makes it difficult to determine if the domestic-origin hypothesis is supported or refuted; in fact, intriguing data for tuberculosis and taenid worms suggests that transmission may occur as easily from humans to domestic animals. These findings do not abrogate the importance of agriculture in disease transmission; rather, if anything, they suggest an alternative, more complex series of effects than previously elucidated. Rather than domestication, the broader force for human pathogen evolution could be ecological change, namely anthropogenic modification of the environment. This is supported by evidence that many current emerging infectious diseases are associated with human modification of the environment. Agriculture may have changed the transmission ecology of pre-existing human pathogens, increased the success of pre-existing pathogen vectors, resulted in novel interactions between humans and wildlife, and, through the domestication of animals, provided a stable conduit for human infection by wildlife diseases.  相似文献   

20.
Infections caused by flaviviruses pose a huge threat for public health all over the world. The search for therapeutically relevant compounds targeting tick-borne flaviviruses requires the exploration of novel chemotypes. In the present work a large series of novel polyfunctionalized isoxazole derivatives bearing substituents with various steric and electronic effects was obtained by our unique versatile synthetic procedure and their antiviral activity against tick-borne encephalitis, Omsk hemorrhagic fever, and Powassan viruses was studied in vitro. The majority of studied isoxazoles showed activity in low micromolar range. No appreciable cytotoxicity was observed for tested compounds. The lead compounds, 5-aminoisoxazole derivatives containing adamantyl moiety, exhibited strong antiviral activity and excellent therapeutic index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号