首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.  相似文献   

2.
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.  相似文献   

3.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle alpha-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle alpha-skeletal actin account for the disease in approximately 15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and "whorling" of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that alpha-actin genotype is not the sole determinant of phenotype.  相似文献   

4.
We have previously reported a Met9Arg mutation in the human skeletal muscle alpha tropomyosin gene (TPM3) associated with autosomal dominant nemaline myopathy [Nat. Genet. 9 (1995) 75]. We describe here the generation of wild-type (Wt-tpm3) and Met9Arg (M9R-tpm3) mutant human skeletal muscle slow alpha tropomyosin using the Baculovirus expression vector system (BEVS). This system produces correct posttranslationally modified recombinant tropomyosin proteins in insect cells. We show that the interactions of Wt-tpm3 with actin and tropomyosin are comparable to those of fast alpha tropomyosin isolated from chicken striated muscle. However, the recombinant M9R-tpm3 is at least 100 times less effective at binding actin than Wt-tpm3. This paper represents the first study of this mutation directly on the human isoform of tropomyosin that is involved in nemaline myopathy. It also represents the first time that human tpm3 has been produced using BEVS. This system can now be used to accurately demonstrate the effect of this (and other disease-associated tropomyosin mutations) on the interactions of tpm3 with the other protein components of the muscle thin filament, including those responsible for differing forms of nemaline myopathy.  相似文献   

5.
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.  相似文献   

6.
Many mutations in the skeletal muscle α-actin gene (ACTA1) lead to muscle weakness and nemaline myopathy. Despite increasing clinical and scientific interest, the molecular and cellular pathogenesis of weakness remains unclear. Therefore, in the present study, we aimed at unraveling these mechanisms using muscles from a transgenic mouse model of nemaline myopathy expressing the ACTA1 Asp286Gly mutation. We recorded and analyzed the mechanics of membrane-permeabilized single muscle fibers. We also performed molecular energy state computations in the presence or absence of Asp286Gly. Results demonstrated that during contraction, the Asp286Gly acts as a “poison-protein” and according to the computational analysis it modifies the actin-actin interface. This phenomenon is likely to prevent proper myosin cross-bridge binding, limiting the fraction of actomyosin interactions in the strong binding state. At the cell level, this decreases the force-generating capacity, and, overall, induces muscle weakness. To counterbalance such negative events, future potential therapeutic strategies may focus on the inappropriate actin-actin interface or myosin binding.  相似文献   

7.
Gene targeting restricted to mouse striated muscle lineage.   总被引:8,自引:0,他引:8       下载免费PDF全文
Spatially and temporally regulated somatic mutations can be achieved by using the Cre/LoxP recombination system of bacteriophage P1. In order to develop gene knockouts restricted to striated muscle, we generated a transgenic mouse line expressing Cre recombinase under the control of the human alpha-skeletal actin promoter. Specific excision of a loxP-flanked gene was demonstrated in striated muscle, heart and skeletal muscle, in a pattern very similar to the expression of the endogenous alpha-skeletal actin gene. Therefore, the reported transgenic line can be used to target inactivation or activation of a given gene to the skeletal muscle lineage.  相似文献   

8.
9.
The nemaline myopathies are characterized by weakness and eosinophilic, rodlike (nemaline) inclusions in muscle fibers. Amish nemaline myopathy is a form of nemaline myopathy common among the Old Order Amish. In the first months of life, affected infants have tremors with hypotonia and mild contractures of the shoulders and hips. Progressive worsening of the proximal contractures, weakness, and a pectus carinatum deformity develop before the children die of respiratory insufficiency, usually in the second year. The disorder has an incidence of approximately 1 in 500 among the Amish, and it is inherited in an autosomal recessive pattern. Using a genealogy database, automated pedigree software, and linkage analysis of DNA samples from four sibships, we identified an approximately 2-cM interval on chromosome 19q13.4 that was homozygous in all affected individuals. The gene for the sarcomeric thin-filament protein, slow skeletal muscle troponin T (TNNT1), maps to this interval and was sequenced. We identified a stop codon in exon 11, predicted to truncate the protein at amino acid 179, which segregates with the disease. We conclude that Amish nemaline myopathy is a distinct, heritable, myopathic disorder caused by a mutation in TNNT1.  相似文献   

10.
11.
Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital myopathy. The proband’s muscle contained characteristic nemaline bodies, as well as occasional fibers with minicores, concentric laminated bodies, and areas of F-actin accumulation. Her affected sister’s muscle was reported to exhibit nonspecific myopathic changes. Cofilin-2 levels were significantly lower in the proband’s muscle, and the mutant protein was less soluble when expressed in Escherichia coli, suggesting that deficiency of cofilin-2 may result in reduced depolymerization of actin filaments, causing their accumulation in nemaline bodies, minicores, and, possibly, concentric laminated bodies.  相似文献   

12.
The term nemaline myopathy (NM) encompasses a heterogeneous group of disorders of primary skeletal muscle weakness characterized by the presence of nemaline rods in muscles of affected individuals. Disease severity is variable and unpredictable, with prognosis ranging from neonatal death to almost normal motor function. Recent advances in the identification of NM disease genes demonstrate that NM is a disease of the skeletal muscle sarcomere and, in particular, of the thin filaments. These findings are starting to alter the approach that neurologists and geneticists take to diagnosing and counseling patients with NM, and could lead to insights into specific directed therapies in the future.  相似文献   

13.
A biopsy of skeletal muscle taken from a child with the clinical symptoms of congenital nemaline myopathy was studied. Light and electron microscopy revealed rod-like structures within the muscle fibres, and thus confirmed the clinical diagnosis. Indirect immunofluorescence, using specific antibodies against actin and desmin (both derived from chicken gizzard) as well as against α-actinin and tropomyosin (both from porcine skeletal muscle) revealed that the rods consist of massive accumulations of α-actinin. Desmin seems to be peripherally associated with the rods. Anti-actin and anti-tropomyosin did not stain the rods; however, a masking effect could not be ruled out. These findings support previous hypotheses that nemaline rods can be taken to be lateral-polymers of normal Z-disks.  相似文献   

14.
In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed.  相似文献   

15.
Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the nine genes associated with the disease, five encode components of striated muscle sarcomeres. In a genetic zebrafish screen, the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganised and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of trg combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, although actin monomers polymerize to form thin filaments in the skeletal muscle of tmod4trg mutants, thin filaments often appeared to be dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion and early death. Myofibrils of tmod4trg mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods, together with the reactivity of rods with phalloidin and an antibody against actinin, is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4trg mutants. Although Tropomodulin4 has not been associated with myopathy, the results presented here implicateTMOD4 as a novel candidate for unresolved nemaline myopathies and suggest that the tmod4trg mutant will be a valuable tool to study human muscle disorders.KEY WORDS: Myofibrillogenesis, Nemaline myopathy, Neuromuscular disorder, Sarcomere assembly, tmod, Tropomodulin  相似文献   

16.
17.
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.  相似文献   

18.
Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76–79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation.  相似文献   

19.
BALB/c mice possess a 5' duplication of the alpha-cardiac actin gene which is associated with abnormal levels of alpha-cardiac and alpha-skeletal actin mRNAs in adult cardiac tissue. This mutation therefore provides a potential tool for the study of the inter-relationship between the striated muscle actins. We have examined the expression of this actin gene pair throughout the development of skeletal and cardiac muscle in BALB/c mice. During embryonic and fetal development, the expression of these two genes is indistinguishable from that in normal mice, as determined by in situ hybridization. A quantitative postnatal study demonstrates that in the hearts of normal mice the level of alpha-cardiac actin mRNA declines, whereas that of alpha-skeletal actin increases. In mutant mice, these trends are exaggerated so that whereas normal mice have 95.8% alpha-cardiac mRNA and 4.2% alpha-skeletal mRNA in the adult heart, BALB/c mice have 52.4 and 47.6% of these mRNAs, respectively. This difference is also reflected at the protein level. In developing skeletal muscle, the expression of these genes follows kinetics similar to that observed in the heart with a decrease in the relative level of alpha-cardiac mRNA as the muscle matures. Cardiac actin mRNA levels are again lower in the mutant mouse, but here the effect is less striking because skeletal actin is the predominant isoform. These results are discussed in the context of the interaction between this actin gene pair in developing and adult striated muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号