首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
6-Phosphogluconate dehydrogenase is the pivotal enzyme that links the gluconate route and the oxidative phase of the pentose phosphate pathway in Schizosaccharomyces pombe. The enzyme differs from the known 6-phosphogluconate dehydrogenases of other sources in that the Schizosaccharomyces enzyme is tetrameric having a subunit mass of 38 kDa, that it requires NADP+ obligatorily for activity, and that it can be activated by divalent metal ions such as Co2+ and Mn2+. Steady-state kinetic studies were undertaken. Initial rate and product inhibition results suggest that 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe catalyzes NADP(+)-linked oxidative decarboxylation of 6-phosphogluconate by an equilibrium random mechanism with two independent binding sites, namely one site for the nicotinamide coenzyme, NADP+/NADPH, and another site for 6-phosphogluconate-D-ribulose-5-phosphate and for CO2. Studies of pH dependence implicated a basic residue with a pK value of 7.4 in the binding of 6-phosphogluconate and an acidic residue with a pK value of 6.7 in the cation-mediated interaction of NADP+ with the enzyme.  相似文献   

2.
The kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae was determined using initial velocity studies in the absence and presence of product and dead end inhibitors in both reaction directions. Data suggest a steady state random kinetic mechanism. The dissociation constant of the Mg-homoisocitrate complex (MgHIc) was estimated to be 11 +/- 2 mM as measured using Mg2+ as a shift reagent. Initial velocity data indicate the MgHIc complex is the reactant in the direction of oxidative decarboxylation, while in the reverse reaction direction, the enzyme likely binds uncomplexed Mg2+ and alpha-ketoadipate. Curvature is observed in the double-reciprocal plots for product inhibition by NADH and the dead-end inhibition by 3-acetylpyridine adenine dinucleotide phosphate when MgHIc is the varied substrate. At low concentrations of MgHIc, the inhibition by both nucleotides is competitive, but as the MgHIc concentration increases, the inhibition changes to uncompetitive, consistent with a steady state random mechanism with preferred binding of MgHIc before NAD. Release of product is preferred and ordered with respect to CO2, alpha-ketoadipate, and NADH. Isocitrate is a slow substrate with a rate (V/E(t)) 216-fold slower than that measured with HIc. In contrast to HIc, the uncomplexed form of isocitrate and Mg2+ bind to the enzyme. The kinetic mechanism in the direction of oxidative decarboxylation of isocitrate, on the basis of initial velocity studies in the absence and presence of dead-end inhibitors, suggests random addition of NAD and isocitrate with Mg2+ binding before isocitrate in rapid equilibrium, and the mechanism approximates rapid equilibrium random. The Keq for the overall reaction measured directly using the change in NADH as a probe is 0.45 M.  相似文献   

3.
The kinetic mechanism of NADP(+)-dependent 3 alpha-hydroxysteroid dehydrogenase and NAD(+)-dependent 3 alpha(17 beta)-hydroxysteroid dehydrogenase, purified from hamster liver cytosol, was studied in both directions. For 3 alpha-hydroxysteroid dehydrogenase, the initial velocity and product inhibition studies indicated that the enzyme reaction sequence is ordered with NADP+ binding to the free enzyme and NADPH being the last product to be released. Inhibition patterns by Cibacron blue and hexestrol, and binding studies of coenzyme and substrate are also consistent with an ordered bi bi mechanism. For 3 alpha(17 beta)-hydroxysteroid dehydrogenase, the steady-state kinetic measurements and substrate binding studies suggest a random binding pattern of the substrates and an ordered release of product; NADH is released last. However, the two enzymes transferred the pro-R-hydrogen atom of NAD(P)H to the carbonyl substrate.  相似文献   

4.
The kinetic mechanisms of the reactions catalyzed by the two catalytic domains of aspartokinase-homoserine dehydrogenase I from Escherichia coli have been determined. Initial velocity, product inhibition, and dead-end inhibition studies of homoserine dehydrogenase are consistent with an ordered addition of NADPH and aspartate beta-semialdehyde followed by an ordered release of homoserine and NADP+. Aspartokinase I catalyzes the phosphorylation of a number of L-aspartic acid analogues and, moreover, can utilize MgdATP as a phosphoryl donor. Because of this broad substrate specificity, alternative substrate diagnostics was used to probe the kinetic mechanism of this enzyme. The kinetic patterns showed two sets of intersecting lines that are indicative of a random mechanism. Incorporation of these results with the data obtained from initial velocity, product inhibition, and dead-end inhibition studies at pH 8.0 are consistent with a random addition of L-aspartic acid and MgATP and an ordered release of MgADP and beta-aspartyl phosphate.  相似文献   

5.
A kinetic analysis of the reaction mechanism of pyrimidine nucleoside monophosphate kinase was carried out with a highly purified enzyme preparation from rat bone marrow cells. The results of initial rate and product inhibition studies provided insight into the mode of action of the enzyme. The data support the views that the reaction mechanism is sequential and nonequilibrium in nature. Substrates bind to the enzyme in a random order. Substrate binding is cooperative. That is, the binding of the first substrate facilitates the binding of the second substrate. UMP can bind to the purine site on the enzyme, resulting in substrate inhibition. Product inhibition can result from the binding of UDP to either the pyrimidine or purine site, or from the binding of ADP to the purine site.  相似文献   

6.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

7.
S A Adediran 《Biochimie》1991,73(9):1211-1218
The steady-state kinetics of normal human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49) dimers were studied as a function of pH and temperature. Inhibition studies using glucosamine 6-phosphate, NADPH and p-hydroxymercuribenzoate (P-OHMB) were also carried out at pH 8.0. The existence of two binding sites on the enzyme with a transition from low to high affinity for NADP+ when NADP+ concentration is increased is indicated by the nonlinear Lineweaver-Burk plots and sigmoid kinetic patterns. NADPH inhibition was found to be competitive with respect to NADP+ and non-competitive with respect to glucose-6-phosphate. Logarithmic plot of Vmax against pH and inactivation by P-OHMB indicate the participation in the reaction mechanism of imidazolium group of histidine and sulhydryl groups. The initial velocity and product inhibition data gave results which are consistent with the dimeric enzyme following an ordered sequential mechanism. A possible random mechanism is ruled out by the inhibition results of glucosamine 6-phosphate.  相似文献   

8.
The inorganic pyrophosphate-requiring 6-phosphofructokinase of Entamoeba histolytica has been further investigated. The molecular weight of the enzyme is approximately 83,000 and its isoelectric point occurs at pH 5.8 to 6.0. The divalent cation requirement for reaction was explored. In the direction of fructose 6-phosphate formation half-maximal rate required 500 muM magnesium ion; in the direction of fructose bisphosphate formation 8 muM magnesium ion sufficed. ATP, PPi, polyphosphate, acetyl phosphate, or carbamyl phosphate cannot replace PPi as phosphate donor for the conversion of fructose 6-phosphate to fructose bisphosphate. In the direction of fructose 6-phosphate formation arsenate can replace orthophosphate. Isotope exchange studies indicate that little or no exchange occurs between Pi and PPi or between fructose 6-phosphate and fructose bisphosphate in the absence of a third substrate. These findings appear to rule out phosphoenzyme formation and a ping-pong reaction mechanism. PPi, Pi, and fructose bisphosphate are competitive inhibitors of fructose bisphosphate, PPi, and fructose 6-phosphate, respectively. This argues against an ordered mechanism and suggests a random mechanism. Fructose 6-phosphate and Pi were noncompetitive with respect to each other indicating the formation of a dead end complex. These product inhibition relationships are in accord with a Random Bi Bi mechanism.  相似文献   

9.
The mechanism of action of yeast beta-hydroxy-beta-methylglutaryl-coenzyme A reductase has been investigated through kinetic studies on the oxidation of mevaldate by nicotinamide adeninine dinucleotide phosphate (NADP) in the presence of coenzyme A (CoA) and on the reduction of mevaldate by reduced NADP (NADPH) in the absence of presence of CoA or acetyl-CoA. NADP and mevalonate were also used as product inhibitors of the reduction of mevaldate. In the reduction of mevaldate to mevalonate, coenzyme A and acetyl-CoA decreased the Km for mevaldate 30- and 3-fold, respectively. Both compounds increased the Vmax 1.5-fold. These results suggest that CoA is an allosteric activator for the second reductive step and that it acts by enhancing the binding of mevaldate. The intersecting patterns obtained from initial velocities and the patterns produced by product inhibitions suggest the following features of the mechanism. The binding of substrates and release of products proceeds sequentially in both reductive steps, and is ordered throughout or random with respect to the binding of the beta-hydroxy-beta-methylglutaryl-coenzymeA and the first NADPH. The binding of NADPH enhances the binding of the beta-hydroxy-beta-methylglutaryl portion of the CoA ester and the binding of free mevaldate, whereas the binding of NADP leads to an increased affinity of the enzyme for the hemithioacetal (of mevaldate and CoA) and for mevalonate. Thus, the replacement of NADP by NADPH after the first reductive step promotes the conversion of the hemithioacetal to the free carbonyl form, which is then rapidly reduced. The products, CoA and mevalonic acid, of the second reductive step leave the enzyme before the release of the second NADP. This release of the last product is probably the rate-limiting step for the overall process.  相似文献   

10.
In the catalytic chain of Escherichia coli aspartate transcarbamylase, Tyr240 helps stabilize the T-state conformation by an intrachain hydrogen bond to Asp271. Changes in kinetic characteristics of ATCase that result from disruption of this bond by site-specific mutation of Tyr240----Phe have been investigated by isotopic exchanges at chemical equilibrium. The Tyr240----Phe (Y240F) mutation caused the rate of the [32P] carbamyl phosphate (C-P) in equilibrium Pi exchange to decrease by 2-8-fold, without altering the [14C]Asp in equilibrium N-carbamyl-L-aspartate (C-Asp) rate. The mutation also caused the S0.5 and Hill nH values to decrease in virtually every substrate saturation experiment. Upon increasing the concentrations of the C-P,Pi or C-P,C-Asp reactant-product pairs, inhibition effects observed with the C-P in equilibrium Pi exchange for wild-type enzyme were not apparent with the Y240F mutant enzyme. In contrast, upon increasing the concentrations of the Asp,C-Asp and Asp,Pi pairs, inhibition effects on C-P in equilibrium Pi observed with wild-type enzyme became stronger with the Y240F mutant enzyme. These data indicate that the Tyr240----Phe mutation alters the kinetic mechanism in two different ways: on the reactant side, C-P binding prior to Asp shifts from preferred to compulsory order, and, on the product side, C-Asp and Pi release changes from preferred to nearly random order. These conclusions were also confirmed on a quantitative basis by computer simulations and fitting of the data, which also produced an optimal set of rate constants for the Y240F enzyme. The Arrhenius plot for wild-type holoenzyme was biphasic, but those for catalytic subunits and Y240F enzyme were linear (monophasic). Taken together, the data indicate that the Tyr240----Phe mutation destabilizes the T-state and shifts the equilibrium for the T-R allosteric transition toward the R-state by increasing the rate of T----R conversion.  相似文献   

11.
Cloning and over-expression of human glucose 6-phosphate dehydrogenase (Glc6P dehydrogenase) has for the first time allowed a detailed kinetic study of a preparation that is genetically homogeneous and in which all the protein molecules are of identical age. The steady-state kinetics of the recombinant enzyme, studied by fluorimetric initial-rate measurements, gave converging linear Lineweaver-Burk plots as expected for a ternary-complex mechanism. Patterns of product and dead-end inhibition indicated that the enzyme can bind NADP+ and Glc6P separately to form binary complexes, suggesting a random-order mechanism. The Kd value for the binding of NADP+ measured by titration of protein fluorescence is 8.0 microm, close to the value of 6.8 microm calculated from the kinetic data on the assumption of a rapid-equilibrium random-order mechanism. Strong evidence for this mechanism and against either of the compulsory-order possibilities is provided by repeating the kinetic analysis with each of the natural substrates replaced in turn by structural analogues. A full kinetic analysis was carried out with deaminoNADP+ and with deoxyglucose 6-phosphate as the alternative substrates. In each case the calculated dissociation constant upon switching a substrate in a random-order mechanism (e.g. that for NADP+ upon changing the sugar phosphate) was indeed constant within experimental error as expected. The calculated rate constants for binding of the leading substrate in a compulsory-order mechanism, however, did not remain constant when the putative second substrate was changed. Previous workers, using enzyme from pooled blood, have variously proposed either compulsory-order or random-order mechanisms. Our study appears to provide unambiguous evidence for the latter pattern of substrate binding.  相似文献   

12.
In contrast to holo-enzyme (c6r6), catalytic subunits (c3) of Escherichia coli aspartate transcarbamylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) do not exhibit allosteric interactions or inhibition effects that complicate kinetic investigations of substrate binding order. Equilibrium isotope-exchange kinetic probes of c3 at pH 7.0 and 30 degrees C produced kinetic saturation patterns consistent with a strongly preferred order random kinetic mechanism, in which carbamoyl phosphate binds prior to aspartate and carbamoyl aspartate is released before Pi. Weak substrate inhibition effects observed with c6r6 did not occur with c3, possibly due to decreased affinity for ligands at the dianion inhibition site.  相似文献   

13.
The Streptococcus pneumoniae 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a potential novel antibacterial target. The enzyme catalyzes a reversible transfer of an enolpyruvyl group from phospho(enol)pyruvate (PEP) to shikimate 3-phosphate (S3P) to give EPSP with the release of inorganic phosphate (Pi). Understanding the kinetic mechanism of this enzyme is crucial to the design of novel inhibitors of this enzyme that may have potential as antibacterial agents. Steady-state kinetic studies of product inhibition and inhibition by glyphosate (GLP) have demonstrated diverse inhibition patterns of the enzyme. In the forward reaction, GLP is a competitive inhibitor with respect to PEP, but an uncompetitive inhibitor relative to S3P. Product inhibition shows that EPSP is a competitive inhibitor versus both PEP and S3P, suggesting that the forward reaction follows a random sequential mechanism. In the reverse reaction, GLP is an uncompetitive inhibitor versus EPSP, but a noncompetitive inhibitor versus Pi. This indicates that a non-productive quaternary complex might be formed between the enzyme, EPSP, GLP and Pi. Product inhibition in the reverse reaction has also been investigated. The inhibition patterns of the S. pneumoniae EPSP synthase are not entirely consistent with those of EPSP synthases from other species, indicating that EPSP synthases from different organisms may adopt unique mechanisms to catalyze the same reactions.  相似文献   

14.
Kinetic mechanism of native Escherichia coli aspartate transcarbamylase   总被引:3,自引:0,他引:3  
Equilibrium isotope exchange kinetics have been used to reinvestigate the kinetic mechanism of Escherichia coli aspartate transcarbamylase (aspartate carbamoyl-transferase) at pH 7.0, 30 degrees C. Keq = 5.9 (+/- 0.6) X 10(3), allowing variation of substrate concentrations above and below their Km values in all experiments, a condition not possible at pH 7.8 [F. C. Wedler and F. J. Gasser (1974) Arch. Biochem. Biophys. 163, 57-68]. The rate of the [14C]Asp in equilibrium N-carbamoyl L-aspartate (C-Asp) exchange reaction was five times faster than that of [32P]carbamyl phosphate (C-P) in equilibrium Pi, which argues strongly against the rapid equilibrium random mechanism previously proposed by E. Heyde, A. Nagabhushanam, and J. F. Morrison [Biochemistry 12, 4718-4726 (1973]. Substrate concentrations were varied either as reactant-product pairs (holding the other pair constant) or together simultaneously in constant ratio at equilibrium. The resulting kinetic saturation patterns were most consistent with a preferred order random kinetic mechanism, with C-P binding prior to Asp and with C-Asp being released before Pi. Weak inhibition effects at high substrate levels could be accounted for by multiple weak dead-end complexes or ionic strength effects. Computer-based simulations have led to a set of rate constants that fit the experimental data, are in agreement with rate constants measured previously by pre-steady-state methods, and predict the correct initial velocities in the forward and reverse directions. Simulations also show that rate constants consistent with any of the various alternative mechanisms do not provide good fit to the experimental data. A model for the kinetic mechanism is considered, in which the binding of Asp prior to C-P may restrict access of C-P to the active site, but C-P binding prior to Asp potentiates the enzyme for the allosteric (T-R) transition, centered entirely upon the Asp binding process.  相似文献   

15.
Human deoxycytidine kinase: kinetic mechanism and end product regulation   总被引:3,自引:0,他引:3  
M Y Kim  D H Ives 《Biochemistry》1989,28(23):9043-9047
The kinetic properties of the monomeric deoxycytidine kinase (EC 2.7.1.74) from leukemic human T-lymphoblasts have been investigated. The results of steady-state initial-rate kinetic analysis and product inhibition studies at pH 7.5 and 37 degrees C indicate that substrate binding follows an ordered sequential pathway, with the magnesium salt of ATP being the first substrate to bind and dCMP the last product to dissociate. At subsaturating substrate concentrations, dCMP produced competitive inhibition against ATP, while against varied deoxycytidine concentrations dCMP exhibited mixed-type inhibition. ADP produced noncompetitive inhibition against either substrate. The limiting Km values for deoxycytidine and MgATP were 0.94 and 30 microM, respectively. The end product inhibitor dCTP exhibited competitive inhibition against varied ATP concentration, with a dissociation constant estimated to be 0.7 microM when extrapolated to zero ATP concentration. dCTP was purely noncompetitive against varied deoxycytidine concentration. On the basis of these kinetic results, and on the strong and specific inhibition by dCTP, it is proposed that this end product functions as a multisubstrate analogue, with its triphosphate group binding to the phosphate donor site of the enzyme and its deoxycytidine moiety overlapping and binding to the deoxynucleoside site in a highly specific manner.  相似文献   

16.
Bohren KM  Grimshaw CE 《Biochemistry》2000,39(32):9967-9974
Kinetic and crystallographic studies have demonstrated that negatively charged aldose reductase inhibitors act primarily by binding to the enzyme complexed with oxidized nicotinamide dinucleotide phosphate (E.NADP(+)) to form a ternary dead-end complex that prevents turnover in the steady state. A recent fluorescence study [Nakano and Petrash (1996) Biochemistry 35, 11196-11202], however, has concluded that inhibition by sorbinil, a classic negatively charged aldose reductase inhibitor, results from binding to the enzyme complexed with reduced cofactor (E.NADPH) and not binding to E.NADP(+). To resolve this controversy, we present transient kinetic data which show unequivocally that sorbinil binds to E.NADP(+) to produce a dead-end complex, the so-called sorbinil trap, which prevents steady-state turnover in the presence of a saturating concentration of aldehyde substrate. The reported fluorescence binding results, which we have confirmed independently, are further shown to be fully consistent with the proposed sorbinil trap mechanism. Our conclusions are supported by KINSIM simulations of both pre-steady-state and steady-state reaction time courses in the presence and absence of sorbinil. Thus, while sorbinil binding indeed occurs to both E.NADPH and E.NADP(+), only the latter dead-end complex shows significant inhibition of the steady-state turnover rate. The effect of tight-binding kinetics on the inhibition patterns observed for zopolrestat, another negatively charged inhibitor, is further examined both experimentally and with KINSIM, with the conclusion that all reported aldose reductase inhibition can be rationalized in terms of binding of an alrestatin-like inhibitor at the active site, with no need to postulate a second inhibitor binding site.  相似文献   

17.
ADP-glucose pyrophosphorylase (AGPase) is highly regulated by allosteric effectors acting both positively and negatively. Enzymes from various sources differ, however, in the mechanism of allosteric regulation. Here, we determined how the effector, inorganic phosphate (Pi), functions in the presence and absence of saturating amounts of the activator, 3-phosphoglyceric acid (3-PGA). This regulation was examined in the maize endosperm enzyme, the oxidized and reduced forms of the potato tuber enzyme as well as a small subunit chimeric AGPase (MP), which contains both maize endosperm and potato tuber sequences paired with a wild-type maize large subunit. These data, combined with our previous kinetic studies of these enzymes led to a model of Pi inhibition for the various enzymes. The Pi inhibition data suggest that while the maize enzyme contains a single effector site that binds both 3-PGA and Pi, the other enzymes exhibit more complex behavior and most likely have at least two separate interacting binding sites for Pi. The possible physiological implications of the differences in Pi inhibition distinguishing the maize endosperm and potato tuber AGPases are discussed.  相似文献   

18.
An analysis of the kinetic mechanism of the microsomal NADPH-linked progesterone 5 alpha-reductase obtained from female rat anterior pituitaries was performed. Initial velocity, product inhibition and dead-end inhibition studies indicate that the kinetic mechanism for the progesterone 5 alpha-reductase is equilibrium ordered sequential. Analysis of the initial velocity data resulted in intersecting double reciprocal plots suggesting a sequential mechanism [apparent Km(progesterone) = 88.2 +/- 8.2 nM; apparent Kia(NADPH) = 7.7 +/- 1.1 microM]. Furthermore, the plot of 1/v vs 1/progesterone intersected on the ordinate which is indicative of an equilibrium ordered mechanism. Additional support for ordered substrate binding was provided by the product inhibition studies with NADPH versus NADP and progesterone versus NADP. NADP is a competitive inhibitor versus NADPH (apparent Kis = 7.8 +/- 1.0 microM) and a noncompetitive inhibitor versus progesterone (apparent Kis = 9.85 +/- 2.1 microM and apparent Kii = 63.2 +/- 12.5 microM). These inhibition patterns suggest that NADPH binds prior to progesterone. In sum, these kinetic studies indicate that NADPH binds to the microsomal enzyme in rapid equilibrium and preferentially precedes the binding of progesterone.  相似文献   

19.
The amination of 2-oxoglutarate catalyzed by NADP-specific glutamate dehydrogenase (EC 1.4.1.4, L-glutamate:NADP+ oxidoreductase (deaminating)) from Halobacterium halobium has been analyzed by initial rate, graphical analysis, and product and competitive inhibition studies. Initial rate and graphical analysis reveal that a B term (representing 2-oxoglutarate) is not statistically necessary for an initial rate equation. However, the absence of a B term does not distinguish between ordered and random binding of NADPH and ammonia. The patterns of product inhibition by NADP+ and L-glutamate, and competitive inhibition by hydroxylamine and succinate permit deduction of the kinetic mechanism as ordered, with NADPH, 2-oxoglutarate and ammonia added in that order, and L-glutamate release preceding NADP+ release.  相似文献   

20.
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号